SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Silva Carlos) "

Sökning: WFRF:(Silva Carlos)

  • Resultat 1-10 av 370
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luize, Bruno Garcia, et al. (författare)
  • Geography and ecology shape the phylogenetic composition of Amazonian tree communities
  • 2024
  • Ingår i: JOURNAL OF BIOGEOGRAPHY. - 0305-0270 .- 1365-2699.
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and v & aacute;rzea forest types, the phylogenetic composition varies by geographic region, but the igap & oacute; and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R-2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R-2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions.
  •  
2.
  • ter Steege, Hans, et al. (författare)
  • Mapping density, diversity and species-richness of the Amazon tree flora
  • 2023
  • Ingår i: COMMUNICATIONS BIOLOGY. - 2399-3642. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution. A study mapping the tree species richness in Amazonian forests shows that soil type exerts a strong effect on species richness, probably caused by the areas of these forest types. Cumulative water deficit, tree density and temperature seasonality affect species richness at a regional scale.
  •  
3.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
4.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  • Householder, John Ethan, et al. (författare)
  • One sixth of Amazonian tree diversity is dependent on river floodplains
  • 2024
  • Ingår i: NATURE ECOLOGY & EVOLUTION. - 2397-334X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.
  •  
6.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Bernal, Ximena E., et al. (författare)
  • Empowering Latina scientists
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 363:6429, s. 825-826
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
9.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
10.
  • Amaral, Rita, et al. (författare)
  • Profiling Persistent Asthma Phenotypes in Adolescents : A Longitudinal Diagnostic Evaluation from the INSPIRERS Studies
  • 2021
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to identify persistent asthma phenotypes among adolescents and to evaluate longitudinally asthma-related outcomes across phenotypes. Adolescents (13-17 years) from the prospective, observational, and multicenter INSPIRERS studies, conducted in Portugal and Spain, were included (n = 162). Latent class analysis was applied to demographic, environmental, and clinical variables, collected at a baseline medical visit. Longitudinal differences in clinical variables were assessed at a 4-month follow-up telephone contact (n = 128). Three classes/phenotypes of persistent asthma were identified. Adolescents in class 1 (n = 87) were highly symptomatic at baseline and presented the highest number of unscheduled healthcare visits per month and exacerbations per month, both at baseline and follow-up. Class 2 (n = 32) was characterized by female predominance, more frequent obesity, and uncontrolled upper/lower airways symptoms at baseline. At follow-up, there was a significant increase in the proportion of controlled lower airway symptoms (p < 0.001). Class 3 (n = 43) included mostly males with controlled lower airways symptoms; at follow-up, while keeping symptom control, there was a significant increase in exacerbations/month (p = 0.015). We have identified distinct phenotypes of persistent asthma in adolescents with different patterns in longitudinal asthma-related outcomes, supporting the importance of profiling asthma phenotypes in predicting disease outcomes that might inform targeted interventions and reduce future risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 370
Typ av publikation
tidskriftsartikel (266)
konferensbidrag (76)
forskningsöversikt (11)
bokkapitel (6)
doktorsavhandling (4)
rapport (2)
visa fler...
annan publikation (2)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (345)
övrigt vetenskapligt/konstnärligt (22)
populärvet., debatt m.m. (1)
Författare/redaktör
Kolanoski, H. (44)
Kowalski, M. (44)
Van Eijndhoven, N. (44)
Ackermann, M. (44)
Barwick, S. W. (44)
Berley, D. (44)
visa fler...
Bernardini, E. (44)
Besson, D. Z. (44)
Blaufuss, E. (44)
Botner, Olga (44)
Fazely, A. R. (44)
Grant, D. (44)
Helbing, K. (44)
Hickford, S. (44)
Hoffman, K. D. (44)
Kappes, A. (44)
Karg, T. (44)
Kiryluk, J. (44)
Koskinen, D. J. (44)
Kurahashi, N. (44)
Larson, M. J. (44)
Madsen, J. (44)
Maruyama, R. (44)
Meagher, K. (44)
Montaruli, T. (44)
Naumann, U. (44)
Olivas, A. (44)
Przybylski, G. T. (44)
Resconi, E. (44)
Rhode, W. (44)
Rott, C. (44)
Ruhe, T. (44)
Bai, X. (43)
Adams, J. (43)
Aguilar, J. A. (43)
Beatty, J. J. (43)
Chirkin, D. (43)
Cowen, D. F. (43)
Desiati, P. (43)
DeYoung, T. (43)
Gerhardt, L. (43)
Halzen, F. (43)
Hanson, K. (43)
Hill, G. C. (43)
Hoshina, K. (43)
Ishihara, A. (43)
Japaridze, G. S. (43)
Karle, A. (43)
Klein, S. R. (43)
Rawlins, K. (43)
visa färre...
Lärosäte
Uppsala universitet (114)
Chalmers tekniska högskola (111)
Stockholms universitet (59)
Lunds universitet (59)
Kungliga Tekniska Högskolan (38)
Karolinska Institutet (36)
visa fler...
Umeå universitet (29)
Luleå tekniska universitet (28)
Göteborgs universitet (27)
Linköpings universitet (20)
Högskolan Dalarna (12)
Sveriges Lantbruksuniversitet (11)
Karlstads universitet (7)
RISE (6)
Mittuniversitetet (5)
Blekinge Tekniska Högskola (4)
Högskolan i Halmstad (3)
Malmö universitet (3)
Linnéuniversitetet (3)
Södertörns högskola (2)
Örebro universitet (1)
Jönköping University (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (367)
Svenska (2)
Portugisiska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (184)
Teknik (149)
Medicin och hälsovetenskap (73)
Lantbruksvetenskap (9)
Samhällsvetenskap (9)
Humaniora (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy