SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Silverå Ejneby Malin 1987 ) "

Sökning: WFRF:(Silverå Ejneby Malin 1987 )

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Botzanowski, Boris, et al. (författare)
  • Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields
  • 2022
  • Ingår i: Advanced Healthcare Materials. - : Wiley. - 2192-2640 .- 2192-2659. ; 11:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrical stimulation of peripheral nerves is a cornerstone of bioelectronic medicine. Effective ways to accomplish peripheral nerve stimulation (PNS) noninvasively without surgically implanted devices are enabling for fundamental research and clinical translation. Here, it is demonstrated how relatively high-frequency sine-wave carriers (3 kHz) emitted by two pairs of cutaneous electrodes can temporally interfere at deep peripheral nerve targets. The effective stimulation frequency is equal to the offset frequency (0.5 - 4 Hz) between the two carriers. This principle of temporal interference nerve stimulation (TINS) in vivo using the murine sciatic nerve model is validated. Effective actuation is delivered at significantly lower current amplitudes than standard transcutaneous electrical stimulation. Further, how flexible and conformable on-skin multielectrode arrays can facilitate precise alignment of TINS onto a nerve is demonstrated. This method is simple, relying on the repurposing of existing clinically-approved hardware. TINS opens the possibility of precise noninvasive stimulation with depth and efficiency previously impossible with transcutaneous techniques.
  •  
2.
  • Jakesova, Marie, et al. (författare)
  • Optoelectronic control of single cells using organic photocapacitors
  • 2019
  • Ingår i: Science Advances. - Washington, DC, United States : American Association for the Advancement of Science (A A A S). - 2375-2548. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical control of the electrophysiology of single cells can be a powerful tool for biomedical research and technology. Here, we report organic electrolytic photocapacitors (OEPCs), devices that function as extracellular capacitive electrodes for stimulating cells. OEPCs consist of transparent conductor layers covered with a donor-acceptor bilayer of organic photoconductors. This device produces an open-circuit voltage in a physiological solution of 330 mV upon illumination using light in a tissue transparency window of 630 to 660 nm. We have performed electrophysiological recordings on Xenopus laevis oocytes, finding rapid (time constants, 50 mu s to 5 ms) photoinduced transient changes in the range of 20 to 110 mV. We measure photoinduced opening of potassium channels, conclusively proving that the OEPC effectively depolarizes the cell membrane. Our results demonstrate that the OEPC can be a versatile nongenetic technique for optical manipulation of electrophysiology and currently represents one of the simplest and most stable and efficient optical stimulation solutions.
  •  
3.
  • Missey, Florian, et al. (författare)
  • Obstructive sleep apnea improves with non-invasive hypoglossal nerve stimulation using temporal interference
  • 2023
  • Ingår i: Bioelectronic Medicine. - : BioMed Central (BMC). - 2332-8886. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Peripheral nerve stimulation is used in both clinical and fundamental research for therapy and exploration. At present, non-invasive peripheral nerve stimulation still lacks the penetration depth to reach deep nerve targets and the stimulation focality to offer selectivity. It is therefore rarely employed as the primary selected nerve stimulation method. We have previously demonstrated that a new stimulation technique, temporal interference stimulation, can overcome depth and focality issues.Methods: Here, we implement a novel form of temporal interference, bilateral temporal interference stimulation, for bilateral hypoglossal nerve stimulation in rodents and humans. Pairs of electrodes are placed alongside both hypoglossal nerves to stimulate them synchronously and thus decrease the stimulation amplitude required to activate hypoglossal-nerve-controlled tongue movement.Results: Comparing bilateral temporal interference stimulation with unilateral temporal interference stimulation, we show that it can elicit the same behavioral and electrophysiological responses at a reduced stimulation amplitude. Traditional transcutaneous stimulation evokes no response with equivalent amplitudes of stimulation.Conclusions: During first-in-man studies, temporal interference stimulation was found to be well-tolerated, and to clinically reduce apnea-hypopnea events in a subgroup of female patients with obstructive sleep apnea. These results suggest a high clinical potential for the use of temporal interference in the treatment of obstructive sleep apnea and other diseases as a safe, effective, and patient-friendly approach.Trial registration: The protocol was conducted with the agreement of the International Conference on Harmonisation Good Clinical Practice (ICH GCP), applicable United States Code of Federal Regulations (CFR) and followed the approved BRANY IRB File # 22-02-636-1279.
  •  
4.
  • Salari, Sajjad, 1978-, et al. (författare)
  • Isopimaric acid - a multi-targeting ion channel modulator reducing excitability and arrhythmicity in a spontaneously beating mouse atrial cell line
  • 2018
  • Ingår i: Acta Physiologica. - : Wiley-VCH Verlagsgesellschaft. - 1748-1708 .- 1748-1716. ; 222:1
  • Tidskriftsartikel (refereegranskat)abstract
    • AimAtrial fibrillation is the most common persistent cardiac arrhythmia, and it is not well controlled by present drugs. Because some resin acids open voltage-gated potassium channels and reduce neuronal excitability, we explored the effects of the resin acid isopimaric acid (IPA) on action potentials and ion currents in cardiomyocytes. MethodsSpontaneously beating mouse atrial HL-1 cells were investigated with the whole-cell patch-clamp technique. Results1-25 mol L-1 IPA reduced the action potential frequency by up to 50%. The effect of IPA on six different voltage-gated ion channels was investigated; most voltage-dependent parameters of ion channel gating were shifted in the negative direction along the voltage axis, consistent with a hypothesis that a lipophilic and negatively charged compound binds to the lipid membrane close to the positively charged voltage sensor of the ion channels. The major finding was that IPA inactivated sodium channels and L- and T-type calcium channels and activated the rapidly activating potassium channel and the transient outward potassium channel. Computer simulations of IPA effects on all of the ion currents were consistent with a reduced excitability, and they also showed that effects on the Na channel played the largest role to reduce the action potential frequency. Finally, induced arrhythmia in the HL-1 cells was reversed by IPA. ConclusionLow concentrations of IPA reduced the action potential frequency and restored regular firing by altering the voltage dependencies of several voltage-gated ion channels. These findings can form the basis for a new pharmacological strategy to treat atrial fibrillation.
  •  
5.
  • Sherrell, Peter, 1986-, et al. (författare)
  • Rational Design of a Conductive Collagen Heart Patch
  • 2017
  • Ingår i: Macromolecular Bioscience. - : Wiley-VCH Verlagsgesellschaft. - 1616-5187 .- 1616-5195. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular diseases, including myocardial infarction, are the cause of significant morbidity and mortality globally. Tissue engineering is a key emerging treatment method for supporting and repairing the cardiac scar tissue caused by myocardial infarction. Creating cell supportive scaffolds that can be directly implanted on a myocardial infarct is an attractive solution. Hydrogels made of collagen are highly biocompatible materials that can be molded into a range of shapes suitable for cardiac patch applications. The addition of mechanically reinforcing materials, carbon nanotubes, at subtoxic levels allows for the collagen hydrogels to be strengthened, up to a toughness of 30 J m-1 and a two to threefold improvement in Youngs' modulus, thus improving their viability as cardiac patch materials. The addition of carbon nanotubes is shown to be both nontoxic to stem cells, and when using single-walled carbon nanotubes, supportive of live, beating cardiac cells, providing a pathway for the further development of a cardiac patch.
  •  
6.
  • Silverå Ejneby, Malin, 1987-, et al. (författare)
  • Atom-by-atom tuning of the electrostatic potassium-channel modulator dehydroabietic acid
  • 2018
  • Ingår i: The Journal of General Physiology. - New York, United States : Rockefeller Institute for Medical Research. - 0022-1295 .- 1540-7748. ; 150:5, s. 731-750
  • Tidskriftsartikel (refereegranskat)abstract
    • Dehydroabietic acid (DHAA) is a naturally occurring component of pine resin that was recently shown to open voltage-gated potassium (KV) channels. The hydrophobic part of DHAA anchors the compound near the channel’s positively charged voltage sensor in a pocket between the channel and the lipid membrane. The negatively charged carboxyl group exerts an electrostatic effect on the channel’s voltage sensor, leading to the channel opening. In this study, we show that the channel-opening effect increases as the length of the carboxyl-group stalk is extended until a critical length of three atoms is reached. Longer stalks render the compounds noneffective. This critical distance is consistent with a simple electrostatic model in which the charge location depends on the stalk length. By combining an effective anchor with the optimal stalk length, we create a compound that opens the human KV7.2/7.3 (M type) potassium channel at a concentration of 1 µM. These results suggest that a stalk between the anchor and the effector group is a powerful way of increasing the potency of a channel-opening drug.
  •  
7.
  • Silverå Ejneby, Malin, 1987-, et al. (författare)
  • Coupling stabilizers open KV1-type potassium channels
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - Washington, DC, United States : The National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:43, s. 27016-27021
  • Tidskriftsartikel (refereegranskat)abstract
    • The opening and closing of voltage-gated ion channels are regulated by voltage sensors coupled to a gate that controls the ion flux across the cellular membrane. Modulation of any part of gating constitutes an entry point for pharmacologically regulating channel function. Here, we report on the discovery of a large family of warfarin-like compounds that open the two voltage-gated type 1 potassium (KV1) channels KV1.5 and Shaker, but not the related KV2-, KV4-, or KV7-type channels. These negatively charged compounds bind in the open state to positively charged arginines and lysines between the intracellular ends of the voltage-sensor domains and the pore domain. This mechanism of action resembles that of endogenous channel-opening lipids and opens up an avenue for the development of ion-channel modulators.
  •  
8.
  • Silverå Ejneby, Malin, 1987- (författare)
  • Site and Mechanism of Action of Resin Acids on Voltage-Gated Ion Channels
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Voltage-gated ion channels are pore-forming membrane proteins that open or close their gates when the voltage across the membrane is changed. They underlie the electrical activity that enables the heart to pump blood and the brain to receive and send signals. Changes in expression, distribution, and functional properties of voltage-gated ion channels can lead to diseases, such as epilepsy, cardiac arrhythmia, and pain-related disorders. Drugs that modulate the function of voltage-gated ion channels control these diseases in some patients, but the existing drugs do not adequately help all patients, and some also have severe side effects.Resin acids are common components of pine resins, with a hydrophobic three-ringed motif and a negatively charged carboxyl group. They open big-conductance Ca2+-activated K+ (BK) channels and voltage-gated potassium (KV) channels. We aimed to characterize the binding site and mechanism of action of resin acids on a KV channel and explore the effect of a resin acid by modifying the position and valence of charge of the carboxyl group. We tested the effect on several voltage-gated ion channels, including two KV channels expressed in Xenopus laevis oocytes and several voltage-gated ion channels expressed in cardiomyocytes. For this endeavour different electrophysiological techniques, ion channels, and cell types were used together with chemical synthesis of about 140 resin-acid derivatives, mathematical models, and computer simulations.We found that resin acids bind between the lipid bilayer and the Shaker KV channel, in the cleft between transmembrane segment S3 and S4, on the extracellular side of the voltage-sensor domain. This is a fundamentally new interaction site for small-molecule compounds that otherwise usually bind to ion channels in pockets surrounded by water. We also showed that the resin acids open the Shaker KV channel via an electrostatic mechanism, exerted on the positively charged voltage sensor S4. The effect of a resin acid increased when the negatively charged carboxyl group (the effector) and the hydrophobic three-ringed motif (anchor in lipid bilayer) were separated by three atoms: longer stalks decreased the effect. The length rule, in combination with modifications of the anchor, was used to design new resin-acid derivatives that open the human M-type (Kv7.2/7.3) channel. A naturally occurring resin acid also reduced the excitability of cardiomyocytes by affecting the voltage-dependence of several voltage-gated ion channels. The major finding was that the resin acid inactivated sodium and calcium channels, while it activated KV channels at more negative membrane voltages. Computer simulations confirmed that the combined effect on different ion channels reduced the excitability of a cardiomyocyte. Finally, the resin acid reversed induced arrhythmic firing of the cardiomyocytes.In conclusion, resin acids are potential drug candidates for diseases such as epilepsy and cardiac arrhythmia: knowing the binding site and mechanism of action can help to fine tune the resin acid to increase the effect, as well as the selectivity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (7)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Silverå Ejneby, Mali ... (8)
Elinder, Fredrik, 19 ... (3)
Donahue, Mary (2)
Williamson, Adam (2)
Brask, Johan (2)
Botzanowski, Boris (2)
visa fler...
Ngom, Ibrahima (2)
Missey, Florian (2)
Acerbo, Emma (2)
Cassara, Antonino M. (2)
Neufeld, Esra (2)
Berggren, Magnus (1)
Simon, Daniel (1)
Jakesova, Marie (1)
Glowacki, Eric (1)
Lundström, Ingemar, ... (1)
Elinder, Fredrik (1)
Glowacki, Eric D. (1)
Konradsson, Peter, 1 ... (1)
Gallina, Alessandro ... (1)
Byun, Donghak (1)
Carron, Romain (1)
Jirsa, Viktor (1)
Olofsson, Peder S. (1)
Glowacki, Eric Danie ... (1)
Wallner, Björn, 1975 ... (1)
Derek, Vedran (1)
Elinder, Fredrik, Pr ... (1)
Gelmi, Amy (1)
Gryszel, Maciej (1)
Jan Los, Marek (1)
de Muinck, Ebo, 1957 ... (1)
Schindl, Rainer (1)
Schmidt, Tony (1)
Wu, Xiongyu, 1972- (1)
Rafat, Mehrdad, 1968 ... (1)
Trajlinek, Jan (1)
Shangold, Lee (1)
Hanes, William M. (1)
Salari, Sajjad, 1978 ... (1)
Brask, Johan, 1971- (1)
Sherrell, Peter, 198 ... (1)
Cieślar-Pobuda, Artu ... (1)
Sammalisto, Laura (1)
Ottosson, Nina, 1984 ... (1)
Münger, E Peter, 196 ... (1)
Brask, Johan, Dr. 19 ... (1)
Snyders, Dirk, Profe ... (1)
visa färre...
Lärosäte
Linköpings universitet (8)
Karolinska Institutet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy