SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Simak Sergei I) "

Sökning: WFRF:(Simak Sergei I)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belonoshko, Anatoly, et al. (författare)
  • Elastic properties of body-centered cubic iron in Earth's inner core
  • 2022
  • Ingår i: Physical Review B. - : American Physical Society (APS). - 2469-9950 .- 2469-9969. ; 105:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The solid Earth's inner core (IC) is a sphere with a radius of about 1300 km in the center of the Earth. The information about the IC comes mainly from seismic studies. The composition of the IC is obtained by matching the seismic data and properties of candidate phases subjected to high pressure (P) and temperature (T). The close match between the density of the IC and iron suggests that the main constituent of the IC is iron. However, the stable phase of iron is still a subject of debate. One such iron phase, the body-centered cubic phase (bcc), is dynamically unstable at pressures of the IC (330-364 GPa) and low T but gets stabilized at high T characteristic of the IC (5000-7000 K). So far, ab initio molecular dynamics (AIMD) studies attempted to compute the bcc elastic properties for a small (order of 102) number of atoms. The mechanism of the bcc stabilization cannot be enabled in such cells and that has led to erroneous results. Here we apply AIMD to compute elastic moduli and sound velocities of the Fe bcc phase for a 2000 Fe atom computational cell, which is a cell of unprecedented size for ab initio calculations of iron. Unlike in previous ab initio calculations, both the longitudinal and the shear sound velocities of the Fe bcc phase closely match the properties of the IC material at P = 360 GPa and T = 6600 K, likely the PT conditions in the IC. The calculated density of the bcc iron at these PT conditions is just 3% higher than the density of the IC material according to the Preliminary Earth Model. This suggests that the widely assumed amount of light elements in the IC may need a reconsideration. The anisotropy of the bcc phase is an exact match to the most recent seismic studies. 
  •  
2.
  • Burakovsky, Leonid, et al. (författare)
  • Systematics of the Third Row Transition Metal Melting: The HCP Metals Rhenium and Osmium
  • 2018
  • Ingår i: Crystals. - : MDPI. - 2073-4352. ; 8:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The melting curves of rhenium and osmium to megabar pressures are obtained from an extensive suite of ab initio quantum molecular dynamics (QMD) simulations using the Z method. In addition, for Re, we combine QMD simulations with total free energy calculations to obtain its phase diagram. Our results indicate that Re, which generally assumes a hexagonal close-packed (hcp) structure, melts from a face-centered cubic (fcc) structure in the pressure range 20-240 GPa. We conclude that the recent DAC data on Re to 50 GPa in fact encompass both the true melting curve and the low-slope hcp-fcc phase boundary above a triple point at (20 GPa, 4240 K). A linear fit to the Re diamond anvil cell (DAC) data then results in a slope that is 2.3 times smaller than that of the actual melting curve. The phase diagram of Re is topologically equivalent to that of Pt calculated by us earlier on. Regularities in the melting curves of Re, Os, and five other 3rd-row transition metals (Ta, W, Ir, Pt, Au) form the 3rd-row transition metal melting systematics. We demonstrate how this systematics can be used to estimate the currently unknown melting curve of the eighth 3rd-row transition metal Hf.
  •  
3.
  • Ghorai, Sagar, et al. (författare)
  • Giant magnetocaloric effect in the (Mn,Fe)NiSi-system
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The search for energy-efficient and environmentally friendly cooling technologies is a key driver for the development of magnetic refrigeration based on the magnetocaloric effect (MCE). This phenomenon arises from the interplay between magnetic and lattice degrees of freedom that is strong in certain materials, leading to a change in temperature upon application or removal of a magnetic field. Here we report on a new material, Mn1−xFexNiSi0.95Al0.05, with an exceptionally large isothermal entropy at room temperature. By combining experimental and theoretical methods we outline the microscopic mechanism behind the large MCE in this material. It is demonstrated that the competition between the Ni2In-type hexagonal phase and the MnNiSi-type orthorhombic phase, that coexist in this system, combined with the distinctly different magnetic properties of these phases, is a key parameter for the functionality of this material for magnetic cooling.
  •  
4.
  • Gordeeva, Alisa, et al. (författare)
  • Layered Zinc Hydroxide Dihydrate, Zn5(OH)10·2H2O, from Hydrothermal Conversion of ε-Zn(OH)2 at Gigapascal Pressures and its Transformation to Nanocrystalline ZnO
  • 2020
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 5:28, s. 17617-17627
  • Tidskriftsartikel (refereegranskat)abstract
    • Layered zinc hydroxides (LZHs) with the general formula (Zn2+)x(OH–)2x−my(Am–)y·nH2O (Am– = Cl–, NO3–, ac–, SO42–, etc) are considered as useful precursors for the fabrication of functional ZnO nanostructures. Here, we report the synthesis and structure characterization of the hitherto unknown “binary” representative of the LZH compound family, Zn5(OH)10·2H2O, with Am– = OH–, x = 5, y = 2, and n = 2. Zn5(OH)10·2H2O was afforded quantitatively by pressurizing mixtures of ε-Zn(OH)2 (wulfingite) and water to 1–2 GPa and applying slightly elevated temperatures, 100–200 °C. The monoclinic crystal structure was characterized from powder X-ray diffraction data (space group C2/c, a = 15.342(7) Å, b = 6.244(6) Å, c = 10.989(7) Å, β = 100.86(1)°). It features neutral zinc hydroxide layers, composed of octahedrally and tetrahedrally coordinated Zn ions with a 3:2 ratio, in which H2O is intercalated. The interlayer d(200) distance is 7.53 Å. The H-bond structure of Zn5(OH)10·2H2O was analyzed by a combination of infrared/Raman spectroscopy, computational modeling, and neutron powder diffraction. Interlayer H2O molecules are strongly H-bonded to five surrounding OH groups and appear orientationally disordered. The decomposition of Zn5(OH)10·2H2O, which occurs thermally between 70 and 100 °C, was followed in an in situ transmission electron microscopy study and ex situ annealing experiments. It yields initially 5–15 nm sized hexagonal w-ZnO crystals, which, depending on the conditions, may intergrow to several hundred nm-large two-dimensional, flakelike crystals within the boundary of original Zn5(OH)10·2H2O particles.
  •  
5.
  • Ji, Fuxiang, 1991-, et al. (författare)
  • Remarkable Thermochromism in the Double Perovskite Cs2NaFeCl6
  • 2024
  • Ingår i: Advanced Optical Materials. - : John Wiley & Sons. - 2162-7568 .- 2195-1071. ; 12:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Lead-free halide double perovskites (HDPs) have emerged as a new generation of thermochromic materials. However, further materials development and mechanistic understanding are required. Here, a highly stable HDP Cs2NaFeCl6 single crystal is synthesized, and its remarkable and fully reversible thermochromism with a wide color variation from light-yellow to black over a temperature range of 10 to 423 K is investigated. First-principles, density functional theory (DFT)-based calculations indicate that the thermochromism in Cs2NaFeCl6 is an effect of electron-phonon coupling. The temperature sensitivity of the bandgap in Cs2NaFeCl6 is up to 2.52 meVK(-1) based on the Varshni equation, which is significantly higher than that of lead halide perovskites and many conventional group-IV, III-V semiconductors. Meanwhile, this material shows excellent environmental, thermal, and thermochromic cycle stability. This work provides valuable insights into HDPs' thermochromism and sheds new light on developing efficient thermochromic materials.
  •  
6.
  • Kerdsongpanya, Sit, et al. (författare)
  • Phonon Thermal Conductivity of Scandium Nitride for Thermoelectric Applications from First-Principles Calculations
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since most technologies either require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity with the effect of microstructure. This is based on ab initio description that includes the temperature dependence of the interatomic force constants, and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions with the experimental data by Time Domain Thermoreflectance (TDTR). Our results show a trend of reduction in lattice thermal conductivity with decreasing grain size, with good agreement between the theoretical model and experimental data. There results suggest a possibility to control thermal conductivity by tailoring the microstructure of ScN. More importantly, we provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on first-principles calculations.
  •  
7.
  • Kerdsongpanya, Sit, et al. (författare)
  • Phonon thermal conductivity of scandium nitride for thermoelectrics from first-principles calculations and thin-film growth
  • 2017
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 96:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The knowledge of lattice thermal conductivity of materials under realistic conditions is vitally important since many modern technologies require either high or low thermal conductivity. Here, we propose a theoretical model for determining lattice thermal conductivity, which takes into account the effect of microstructure. It is based on ab initio description that includes the temperature dependence of the interatomic force constants and treats anharmonic lattice vibrations. We choose ScN as a model system, comparing the computational predictions to the experimental data by time-domain thermoreflectance. Our experimental results show a trend of reduction in lattice thermal conductivity with decreasing domain size predicted by the theoretical model. These results suggest a possibility to control thermal conductivity by microstructural tailoring and provide a predictive tool for the effect of the microstructure on the lattice thermal conductivity of materials based on ab initio calculations.
  •  
8.
  • Klarbring, Johan, et al. (författare)
  • Electronic structure of the magnetic halide double perovskites Cs-2(Ag, Na)FeCl6 from first principles
  • 2023
  • Ingår i: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • A family of magnetic halide double perovskites (HDPs) have recently attracted attention due to their potential to broaden application areas of halide double perovskites into, e.g., spintronics. Up to date the theoretical modeling of these systems have relied on primitive approximations to the density functional theory (DFT). In this paper, we study structural, electronic and magnetic properties of the Fe3+-containing HDPs Cs2AgFeCl6 and Cs2NaFeCl6 using a combination of more advanced DFT-based methods, including DFT + U, hybrid-DFT, and treatments of various magnetic states. We examine the effect of varying the effective Hubbard parameter, U-eff, in DFT + U and the mixing-parameter, alpha, in hybrid DFT on the electronic structure and structural properties. Our results reveal a set of localized Fe(d) states that are highly sensitive to these parameters. Cs2AgFeCl6 and Cs2NaFeCl6 are both antiferromagnets with Neel temperatures well below room temperature and are thus in their paramagnetic (PM) state at the external conditions relevant to most applications. Therefore, we have examined the effect of disordered magnetism on the electronic structure of these systems and find that while Cs2NaFeCl6 is largely unaffected, Cs2AgFeCl6 shows significant renormalization of its electronic band structure.
  •  
9.
  • Knoop, Florian, et al. (författare)
  • TDEP:Temperature Dependent Effective Potentials
  • 2024
  • Ingår i: Journal of Open Source Software. - : Open journals. - 2475-9066. ; 9:94
  • Tidskriftsartikel (refereegranskat)abstract
    • The Temperature Dependent Effective Potential (TDEP) method is a versatile and efficient approach to include temperature in a binitio materials simulations based on phonon theory. TDEP can be used to describe thermodynamic properties in classical and quantum ensembles, and several response properties ranging from thermal transport to Neutron and Raman spectroscopy. A stable and fast reference implementation is given in the software package of the same name described here. The underlying theoretical framework and foundation is briefly sketched with an emphasis on discerning the conceptual difference between bare and effective phonon theory, in both self-consistent and non-self-consistent formulations. References to numerous applications and more in-depth discussions of the theory are given.
  •  
10.
  • Mikhaylushkin, Arkady S, et al. (författare)
  • High-pressure structural behavior of large-void CoSn-type intermetallics: Experiments and first-principles calculations
  • 2008
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : Institutionen för fysik, kemi och biologi. - 1098-0121 .- 1550-235X. ; 77:1, s. 014102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The high-pressure structural behavior of the binary intermetallic compounds CoSn, FeSn, and NiIn with the peculiar void containing CoSn (B35)-type structure has been studied by means of room-temperature diamond anvil cell and high-temperature multianvil experiments, as well as by first-principles calculations. All three compounds remain structurally stable at pressures up to at least 25 GPa, whereas first-principles calculations predict high-pressure structural changes below 20 GPa. A plausible explanation for the discrepancy is that at room temperature, a sizable activation barrier inhibits kinetically the transformation into more close-packed polymorphs. It is supported by our experiments at temperatures around 1000 °C and a pressure of 10 GPa. At these conditions, NiIn transforms into the temperature-quenchable stoichiometric CsCl-type high-pressure phase, which has been predicted in our first-principles calculations. However, CoSn and FeSn decompose into a mixture of compounds richer and poorer in tin, respectively. Nevertheless, it might be possible that lower temperatures and higher pressures may afford theoretically predicted polymorphs. In particular, a phase transformation to the FeSi-type structure predicted for CoSn is of interest as materials with the FeSi-type structure are known for unusual thermal and transport properties.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (14)
annan publikation (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Simak, Sergei I, 196 ... (12)
Hellman, Olle (3)
Abrikosov, Igor (3)
Abrikosov, Igor A., ... (3)
Vekilova, Olga Yu. (3)
Lu, Jun (2)
visa fler...
Alling, Björn (2)
Buyanova, Irina A, 1 ... (2)
Eklund, Per (2)
Häussermann, Ulrich, ... (2)
Zhang, Bin (2)
Gao, Feng, 1981- (2)
Gao, Feng (2)
Kohlmann, Holger (2)
Klarbring, Johan (2)
Chen, Weimin, 1959- (2)
Zhang, Muyi (2)
et, al. (1)
Eriksson, Olle, 1960 ... (1)
Abrikosov, I. A. (1)
Johansson, Börje (1)
Olovsson, Weine (1)
Carlson, Stefan (1)
Svedlindh, Peter (1)
Fahlman, Mats, 1967- (1)
Skorodumova, Natalia ... (1)
Sun, Licheng (1)
Häussermann, Ulrich (1)
Andersson, Ove (1)
B. Brant Carvalho, P ... (1)
Hsu, Ying-Jui (1)
Herper, Heike C. (1)
Delczeg-Czirjak, Ern ... (1)
Mikhaylushkin, Arkad ... (1)
Ghorai, Sagar (1)
Bakhit, Babak, 1983- (1)
Chen, Weimin (1)
Buyanova, Irina (1)
Belonoshko, Anatoly (1)
Skorodumova, N. V. (1)
Burakovsky, Leonid (1)
Shtender, Vitalii (1)
Lundqvist, Bengt, 19 ... (1)
Björkman, Torbjörn (1)
Sahlberg, Martin, 19 ... (1)
Christianen, Peter C ... (1)
Burakovsky, Naftali (1)
Preston, Dean (1)
Magnuson, Martin, 19 ... (1)
Cai, Xinyi (1)
visa färre...
Lärosäte
Linköpings universitet (14)
Uppsala universitet (10)
Kungliga Tekniska Högskolan (4)
Stockholms universitet (4)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (18)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy