SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Singh Deobrat) "

Sökning: WFRF:(Singh Deobrat)

  • Resultat 1-10 av 83
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghosh, Aishee, et al. (författare)
  • Proximal discrepancies in intrinsic atomic interaction determines comparative in vivo biotoxicity of Chlorpyrifos and 3,5,6-trichloro-2-pyridinol in embryonic zebrafish
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 913
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioaccumulation of Chlorpyrifos (CP) as pesticides due to their aggrandized use in agriculture has raised serious concern on the health of ecosystem and human beings. Moreover, their degraded products like 3,5,6-trichloro-2pyridinol (TCP) has enhanced the distress due to their unpredictable biotoxicity. This study evaluates and deduce the comparative in vivo mechanistic biotoxicity of CP and TCP with zebrafish embryos through experimental and computational approach. Experimental cellular and molecular analysis showed higher induction of morphological abnormalities, oxidative stress and apoptosis in TCP exposed embryos compared to CP exposure due to upregulation of metabolic enzymes like Zhe1a, Sod1 and p53. Computational analysis excavated the differential discrepancies in intrinsic atomic interaction as a reason of disparity in biotoxicity of CP and TCP. The mechanistic differences were deduced due to the differential accumulation and internalisation leading to variable interaction with metabolic enzymes for oxidative stress and apoptosis causing physiological and morphological abnormalities. The study unravelled the information of in vivo toxicity at cellular and molecular level to advocate the attention of taking measures for management of CP as well as TCP for environmental and human health.
  •  
2.
  • Kaur, A., et al. (författare)
  • Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics
  • 2021
  • Ingår i: Journal of materials science. Materials in electronics. - : Springer Nature. - 0957-4522 .- 1573-482X. ; 32:20, s. 24910-24929
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study demonstrates the reduction in the dielectric loss at room temperature from 0.149 to 0.027 in the composite of (NdFeO3)0.1−(Ba0.7Sr0.3TiO3)0.9 as compared to the undoped Ba0.7Sr0.3TiO3 and correlates with the charge compensation due to the ionic substitutions for both A site (NdBa) and B (FeTi) site generated excess electrons, localized hole states and robust oxygen vacancies (VO) along with different cationic oxidation states. The VO mediated F center charge transfer mechanism i.e., bound magnetic polaronic behaviour and defect complex generated between acceptors and ionized VO reduce electrical conductivity and loss factor. The presence of weak ferromagnetism in the M-H loop reconfirms the F center exchange mechanism in mixed phase symmetry. The activation energy calculated from impedance spectroscopy, electrical modulus and electrical conductivity analysis supports the presence of doubly ionized VO. Further, density functional theory based first principle calculation manifests that the impurity induced depopulation of valence band edge electrons into a single spin up channel which distorts TiO6 octahedra with fluctuating bond length and Ti 3deg orbital splitting observed in decomposed density of states for accommodating excess electrons. These trapped and accommodated electrons reduce the effective electron concentration which in turn decreases the electrical conductivity and loss factor. 
  •  
3.
  • Mohakud, Nirmal Kumar, et al. (författare)
  • Intrinsic insights to antimicrobial effects of Nitrofurantoin to multi drug resistant Salmonella enterica serovar Typhimurium ms202
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 165
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging multidrug resistant (MDR) serovar of Salmonella has raised the concern of their impactful effect on pathogenic infection and mortality in human lead by the enteric diseases. In order to combat the battle against these MDR Salmonella pathogen, new drug molecules need to be evaluated for their potent antibacterial application. This study evaluates the mechanistic antimicrobial effect of nitrofurantoin against a MDR strain of Salmonella named S. enterica Typhimurium ms202. The antimicrobial effect of nitrofurantoin was studied through experimental and computational approach using standard microbiological and molecular techniques like growth curve analysis, live-dead analysis, oxidative stress evaluation using high throughput techniques like flow cytometry and fluorescent microscopy. The result showed a potent dose dependent antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202 with a MIC value of 64 & mu;g/ml. Moreover, the mechanistic excavation of the phenomenon described the mechanism as an effect of molecular interaction of nitrofurantoin molecule with membrane receptor proteins OmpC of S. enterica Typhimurium ms202 leading to internalization of the nitrofurantoin heading towards the occurrence of cellular physiological disturbances through oxidative stress impeded by nitrofurantoin-Sod1 C protein interaction. The results indicated towards a synergistic effect of membrane damage, oxidative stress and genotoxicity for the antibacterial effect of nitrofurantoin against S. enterica Typhimurium ms202. The study described the potent dose-dependent application of nitrofurantoin molecule against MDR strains of Salmonella and guided towards their use in further discovered MDR strains.
  •  
4.
  • Ayreen, Zobia, et al. (författare)
  • Perilous paradigm of graphene oxide and its derivatives in biomedical applications : Insight to immunocompatibility
  • 2024
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 176
  • Forskningsöversikt (refereegranskat)abstract
    • With advancements in nanotechnology and innovative materials, Graphene Oxide nanoparticles (GONP) have attracted lots of attention among the diverse types of nanomaterials owing to their distinctive physicochemical characteristics. However, the usage at scientific and industrial level has also raised concern to their toxicological interaction with biological system. Understanding these interactions is crucial for developing guidelines and recommendations for applications of GONP in various sectors, like biomedicine and environmental technologies. This review offers crucial insights and an in-depth analysis to the biological processes associated with GONP immunotoxicity with multiple cell lines including human whole blood cultures, dendritic cells, macrophages, and multiple cancer cell lines. The complicated interactions between graphene oxide nanoparticles and the immune system, are highlighted in this work, which reveals a range of immunotoxic consequences like inflammation, immunosuppression, immunostimulation, hypersensitivity, autoimmunity, and cellular malfunction. Moreover, the immunotoxic effects are also highlighted with respect to in vivo models like mice and zebrafish, insighting GO Nanoparticles' cytotoxicity. The study provides invaluable review for researchers, policymakers, and industrialist to understand and exploit the beneficial applications of GONP with a controlled measure to human health and the environment.
  •  
5.
  • Gond, Ritambhara, et al. (författare)
  • Pyrophosphate Na2CoP2O7 Polymorphs as Efficient Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries
  • 2022
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 14:36, s. 40761-40770
  • Tidskriftsartikel (refereegranskat)abstract
    • Developing earth-abundant low-cost bifunctional oxygen electrocatalysts is a key approach to realizing efficient energy storage and conversion. By exploring Co-based sodium battery materials, here we have unveiled nanostructured pyrophosphate Na2CoP2O7 polymorphs displaying efficient bifunctional electrocatalytic activity. While the orthorhombic polymorph (oNCPy) has superior oxygen evolution reaction (OER) activity, the triclinic polymorph (t-NCPy) delivers better oxygen reduction reaction (ORR) activity. Simply by tuning the annealing condition, these pyrophosphate polymorphs can be easily prepared at temperatures as low as 500 degrees C. The electrocatalytic activity is rooted in the Co redox center with the (100) active surface and stable structural framework as per ab initio calculations. It marks the first case of phospho-anionic systems with both polymorphs showing stable bifunctional activity with low combined overpotential (ca. similar to 0.7 V) comparable to that of reported state-of-the-art catalysts. These nanoscale cobalt pyrophosphates can be implemented in rechargeable zinc-air batteries.
  •  
6.
  • Negi, Devendra Singh, et al. (författare)
  • Spin-entropy induced thermopower and spin-blockade effect in CoO
  • 2019
  • Ingår i: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 100:14
  • Tidskriftsartikel (refereegranskat)abstract
    • We report spin-entropy-induced thermopower and the occurrence of a spin-blockade effect in stoichiometric disordered CoO. Cation defect-driven distortion in the octahedral ligand field of CoO leads to a charge transfer process and favors the stabilization of Co+3 charge states at defect adjacent atomic sites. Moreover, a higher extent of local stoichiometric disruption triggers the spin crossover and magnetic collapse into a Co+3 state. Degenerated spin-orbital states on vacancy neighbored atomic sites render the spin-orbital degeneracy to enhance the thermopower in CoO. Furthermore, we unravel an operating spin-blockade effect in CoO. The localized combination of active magnetic states-high-spin Co+2 and neutral magnetic states-low-spin Co+3 on alternate atomic sites suppress the charge carrier hopping due to a spin blockade. In the pursuit of efficient thermoelectric material, the present investigation explores the potential of the recipe of spin entropy and defect-engineered CoO.
  •  
7.
  • Panigrahi, Puspamitra, et al. (författare)
  • Two-Dimensional Nitrogenated Holey Graphene (C2N) Monolayer Based Glucose Sensor for Diabetes Mellitus
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 573
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time monitoring of sugar molecules is crucial for diagnosis, controlling, and preventing diabetes. Here, we have proposed the potential of porous C2N monolayer-based glucose sensor to detect the sugar molecules (glucose, fructose, and xylose) by employing the van der Waals interactions corrected first-principles density functional theory and non-equilibrium Green’s function methods. The binding energy turns out to be -0.93 (-1.31) eV for glucose, -0.84 (-1.23) eV for fructose, and -0.81 (-1.30) eV for xylose in gas phase (aqueous medium). The Bader charge analysis reveals that the C2N monolayer donates charge to the sugar molecules. The dimensionless electron localization function highlights that glucose, fructose, and xylose bind through physisorption. The adsorption of sugar molecules on the C2N monolayer increases the workfunction compared to 3.54 eV (pristine C2N) with about 2.00 eV, indicating a suppressed probability of electron mobility. The electronic transport properties of C2N based device reveals distinct characteristics and zero-bias transmissions. The distinctive properties of the C2N monolayer can be indexed as promising identifiers for glucose sensors to detect blood sugar.
  •  
8.
  • Singh, Deobrat, et al. (författare)
  • Eldfellite NaV(SO4)2 as a versatile cathode insertion host for Li-ion and Na-ion batteries
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 11:8, s. 3975-3986
  • Tidskriftsartikel (refereegranskat)abstract
    • In search of high energy density cathode materials, the eldfellite mineral-type NaVIII(SO4)2 compound has been theoretically predicted to be a promising cathode insertion host for sodium-ion batteries. Synergizing computational and experimental investigations, the current work introduces NaVIII(SO4)2 as a novel versatile cathode for Li-ion and Na-ion batteries. Prepared by a low temperature sol-gel synthesis route, the eldfellite NaV(SO4)2 cathode exhibited an initial capacity approaching ∼79% (vs. Li+/Li) and ∼69% (vs. Na+/Na) of the theoretical capacity (1e− ≅ 101 mA h g−1) involving the V3+/V2+ redox potential centered at 2.57 V and 2.28 V, respectively. The bond valence site energy (BVSE) approach and DFT-based calculations were used to gain mechanistic insight into alkali ion migration and probe the redox center during (de)insertion of Li+/Na+ ions. Post-mortem and electrochemical titration tools revealed the occurrence of a single-phase (solid-solution) redox mechanism during reversible Li+/Na+ (de)insertion into NaVIII(SO4)2. With the multivalent vanadium redox center, eldfellite NaVIII(SO4)2 forms a new cathode insertion host for Li/Na-ion batteries with potential two-electron uptake. 
  •  
9.
  • Verma, Suresh K., et al. (författare)
  • In silico nanotoxicology : The computational biology state of art for nanomaterial safety assessments
  • 2023
  • Ingår i: Materials & design. - : Elsevier. - 0264-1275 .- 1873-4197. ; 235
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent decade, nanotechnology has got an extensive advancement in terms of production and application of nanomaterials. With the advancement, concern has risen for their biomedical and ecological safety, provoking a detailed analysis of the safety assement. Numerous experimental and computational approach has been developed to accomplish the goal of safety assessment of nanomaterials leading to orgin of interdisciplinary fields like nanoinformatics. Nanoinformatics has accomplished significant strides with the development of several modeling frameworks, data platforms, knowledge infrastructures, and in silico tools for risk assessment forecasts of nanomaterials. This review is an attemption to decipher and establish the bridge between the two emerging scientific arenas that includes computational modeling and nanotoxicity. We have reviewed the recent informations to uncover the link between the computational toxicology and nanotoxicology in terms of biomedical and ecological applications. In addition to the details about nanomaterials interaction with the biological system, this article offers a concise evaluation of recent developments in the various nanoinformatics domains. In detail, the computational tools like molecular docking, QSAR, etc. for the prediction of nanotoxicity here have been described. Moreover, techniques like molecular dynamics simulations used for experimental data collection and their translation to standard computational formats are explored.
  •  
10.
  • Verma, Suresh K., et al. (författare)
  • The posterity of Zebrafish in paradigm of in vivo molecular toxicological profiling
  • 2024
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier. - 0753-3322 .- 1950-6007. ; 171
  • Forskningsöversikt (refereegranskat)abstract
    • The aggrandised advancement in utility of advanced day-to-day materials and nanomaterials has raised serious concern on their biocompatibility with human and other biotic members. In last few decades, understanding of toxicity of these materials has been given the centre stage of research using many in vitro and in vivo models. Zebrafish (Danio rerio), a freshwater fish and a member of the minnow family has garnered much attention due to its distinct features, which make it an important and frequently used animal model in various fields of embryology and toxicological studies. Given that fertilization and development of zebrafish eggs take place externally, they serve as an excellent model organism for studying early developmental stages. Moreover, zebrafish possess a comparable genetic composition to humans and share almost 70% of their genes with mammals. This particular model organism has become increasingly popular, especially for developmental research. Moreover, it serves as a link between in vitro studies and in vivo analysis in mammals. It is an appealing choice for vertebrate research, when employing high-throughput methods, due to their small size, swift development, and relatively affordable laboratory setup. This small vertebrate has enhanced comprehension of pathobiology and drug toxicity. This review emphasizes on the recent developments in toxicity screening and assays, and the new insights gained about the toxicity of drugs through these assays. Specifically, the cardio, neural, and, hepatic toxicology studies inferred by applications of nanoparticles have been highlighted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 83
Typ av publikation
tidskriftsartikel (72)
forskningsöversikt (6)
konferensbidrag (5)
Typ av innehåll
refereegranskat (83)
Författare/redaktör
Singh, Deobrat (83)
Ahuja, Rajeev, 1965- (68)
Sonvane, Yogesh (27)
Khossossi, Nabil (15)
Panda, Pritam Kumar, ... (14)
Ainane, Abdelmajid (12)
visa fler...
Gupta, Sanjeev K. (10)
Mishra, Yogendra Kum ... (8)
Mishra, Pushkar (8)
Ahuja, Rajeev (7)
Essaoudi, Ismail (7)
Luo, Wei (6)
Patel, Abhishek (6)
Verma, Suresh K. (5)
Sinha, Adrija (5)
Yang, Xiaoyong (5)
Shukla, Vivekanand, ... (5)
Hussain, Tanveer (4)
Kaushik, Nagendra Ku ... (4)
Suar, Mrutyunjay (4)
Nandi, Aditya (4)
Zhao, Xiaofeng (4)
Haman, Zakaryae (4)
Larsson, J. Andreas (3)
Sajjad, Muhammad (3)
Kibbou, Moussa (3)
Singh, Dibyangshee (3)
Das, Arkaprava (3)
Kaur, Anumeet (3)
Mishra, Shashank (3)
van Aken, Peter A. (3)
Hussain, T. (2)
Barpanda, Prabeer (2)
Gupta, Abha (2)
Lenka, Sudakshya S. (2)
Naser, Shaikh Sheera ... (2)
Chouhan, Raghuraj Si ... (2)
Samal, Shailesh Kuma ... (2)
Jha, Ealisha (2)
Dutt, Ateet (2)
Gajjar, P. N. (2)
Jeanneau, Erwann (2)
Bouziani, Ilyas (2)
Simnani, Faizan Zarr ... (2)
Ghosh, Aishee (2)
Saini, C. P. (2)
Gahlot, Sweta (2)
Jena, Snehasmita (2)
Karton, A. (2)
Asokan, K. (2)
visa färre...
Lärosäte
Uppsala universitet (83)
Kungliga Tekniska Högskolan (37)
Chalmers tekniska högskola (5)
Luleå tekniska universitet (3)
Örebro universitet (1)
Karolinska Institutet (1)
Språk
Engelska (83)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (82)
Teknik (5)
Medicin och hälsovetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy