SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sipilä Petra) "

Sökning: WFRF:(Sipilä Petra)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkgren, Ida, et al. (författare)
  • Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane.
  • 2015
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 29:2, s. 433-442
  • Tidskriftsartikel (refereegranskat)abstract
    • During epididymal sperm maturation, the lipid content of the sperm membrane is modified, which facilitates sperm motility and fertility. However, little is known about the mechanisms regulating the maturation process. By generating a conditional knockout (cKO) of Dicer1 in the proximal part of the mouse epididymis, we studied the role of RNA interference in epididymal functions. The Dicer1 cKO epididymis displayed an altered lipid homeostasis associated with a 0.6-fold reduction in the expression of the gene elongation of very long chain fatty acids-like 2, an enzyme needed for production of long-chain polyunsaturated fatty acids (PUFAs). Furthermore, the expression of several factors involved in cholesterol synthesis was up-regulated. Accordingly, the Dicer1 cKO sperm membrane showed a 0.7-fold decrease in long-chain PUFAs, whereas the amount of cholesterol in acrosome-reacted sperm displayed a 1.7-fold increase. The increased cholesterol:PUFA ratio of the sperm membrane caused breakage of the neck and acrosome region and immotility of sperm. Dicer1 cKO mice sperm also displayed reduced ability to bind to and fertilize the oocyte in vitro. This study thus shows that Dicer1 is critical for lipid synthesis in the epididymis, which directly affects sperm membrane integrity and male fertility.-Björkgren, I., Gylling, H., Turunen, H., Huhtaniemi, I., Strauss, L., Poutanen, M., Sipilä, P. Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane.
  •  
2.
  • Junnila, Arttu, et al. (författare)
  • HSD17B1 Compensates for HSD17B3 Deficiency in Fetal Mouse Testis but Not in Adults.
  • 2024
  • Ingår i: Endocrinology. - 0013-7227 .- 1945-7170. ; 165:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydroxysteroid (17β) dehydrogenase (HSD17B) enzymes convert 17-ketosteroids to 17beta-hydroxysteroids, an essential step in testosterone biosynthesis. Human XY individuals with inactivating HSD17B3 mutations are born with female-appearing external genitalia due to testosterone deficiency. However, at puberty their testosterone production reactivates, indicating HSD17B3-independent testosterone synthesis. We have recently shown that Hsd17b3 knockout (3-KO) male mice display a similar endocrine imbalance, with high serum androstenedione and testosterone in adulthood, but milder undermasculinization than humans. Here, we studied whether HSD17B1 is responsible for the remaining HSD17B activity in the 3-KO male mice by generating a Ser134Ala point mutation that disrupted the enzymatic activity of HSD17B1 (1-KO) followed by breeding Hsd17b1/Hsd17b3 double-KO (DKO) mice. In contrast to 3-KO, inactivation of both HSD17B3 and HSD17B1 in mice results in a dramatic drop in testosterone synthesis during the fetal period. This resulted in a female-like anogenital distance at birth, and adult DKO males displayed more severe undermasculinization than 3-KO, including more strongly reduced weight of seminal vesicles, levator ani, epididymis, and testis. However, qualitatively normal spermatogenesis was detected in adult DKO males. Furthermore, similar to 3-KO mice, high serum testosterone was still detected in adult DKO mice, accompanied by upregulation of various steroidogenic enzymes. The data show that HSD17B1 compensates for HSD17B3 deficiency in fetal mouse testis but is not the enzyme responsible for testosterone synthesis in adult mice with inactivated HSD17B3. Therefore, other enzymes are able to convert androstenedione to testosterone in the adult mouse testis and presumably also in the human testis.
  •  
3.
  • Knuuttila, Matias, et al. (författare)
  • Antiandrogens Reduce Intratumoral Androgen Concentrations and Induce Androgen Receptor Expression in Castration-Resistant Prostate Cancer Xenografts.
  • 2018
  • Ingår i: The American journal of pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 188:1, s. 216-228
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of castration-resistant prostate cancer (CRPC) is associated with the activation of intratumoral androgen biosynthesis and an increase in androgen receptor (AR) expression. We recently demonstrated that, similarly to the clinical CRPC, orthotopically grown castration-resistant VCaP (CR-VCaP) xenografts express high levels of AR and retain intratumoral androgen concentrations similar to tumors grown in intact mice. Herein, we show that antiandrogen treatment (enzalutamide or ARN-509) significantly reduced (10-fold, P<0.01) intratumoral testosterone and dihydrotestosterone concentrations in the CR-VCaP tumors, indicating that the reduction in intratumoral androgens is a novel mechanism by which antiandrogens mediate their effects in CRPC. Antiandrogen treatment also altered the expression of multiple enzymes potentially involved in steroid metabolism. Identical to clinical CRPC, the expression levels of the full-length AR (twofold, P<0.05) and the AR splice variants 1 (threefold, P<0.05) and 7 (threefold, P<0.01) were further increased in the antiandrogen-treated tumors. Nonsignificant effects were observed in the expression of certain classic androgen-regulated genes, such as TMPRSS2 and KLK3, despite the low levels of testosterone and dihydrotestosterone. However, other genes recently identified to be highly sensitive to androgen-regulated AR action, such as NOV and ST6GalNAc1, were markedly altered, which indicated reduced androgen action. Taken together, the data indicate that, besides blocking AR, antiandrogens modify androgen signaling in CR-VCaP xenografts at multiple levels.
  •  
4.
  • Mätlik, Kärt, et al. (författare)
  • Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia.
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578.
  • Tidskriftsartikel (refereegranskat)abstract
    • Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
  •  
5.
  • Saarikettu, Juha, et al. (författare)
  • The RNA-binding protein Snd1/Tudor-SN regulates hypoxia-responsive gene expression.
  • 2023
  • Ingår i: FASEB bioAdvances. - : Wiley. - 2573-9832. ; 5:5, s. 183-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Snd1 is an evolutionarily conserved RNA-binding protein implicated in several regulatory processes in gene expression including activation of transcription, mRNA splicing, and microRNA decay. Here, we have investigated the outcome of Snd1 gene deletion in the mouse. The knockout mice are viable showing no gross abnormalities apart from decreased fertility, organ and body size, and decreased number of myeloid cells concomitant with decreased expression of granule protein genes. Deletion of Snd1 affected the expression of relatively small number of genes in spleen and liver. However, mRNA expression changes in the knockout mouse liver showed high similarity to expression profile in adaptation to hypoxia. MicroRNA expression in liver showed upregulation of the hypoxia-induced microRNAs miR-96 and -182. Similar to Snd1 deletion, mimics of miR-96/182 enhanced hypoxia-responsive reporter activity. To further elucidate the function of SND1, BioID biotin proximity ligation assay was performed in HEK-293T cells to identify interacting proteins. Over 50% of the identified interactors were RNA-binding proteins, including stress granule proteins. Taken together, our results show that in normal growth conditions, Snd1 is not a critical factor for mRNA transcription in the mouse, and describe a function for Snd1 in hypoxia adaptation through negatively regulating hypoxia-related miRNAs and hypoxia-induced transcription consistent with a role as stress response regulator.
  •  
6.
  • Sipilä, Petra, et al. (författare)
  • Regional expression of androgen receptor coregulators and androgen action in the mouse epididymis.
  • 2011
  • Ingår i: Journal of andrology. - : Wiley. - 1939-4640 .- 0196-3635. ; 32:6, s. 711-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Endocrine regulation of the mouse initial segment (IS) and distal caput epididymides was studied using genome-wide profiling of gene expression. Among the IS-enriched genes, 29% were significantly down-regulated 1 day after gonadectomy. Of those genes, dihydrotestosterone (DHT) supplementation was not sufficient to maintain their pregonadectomy level of expression in 70%. Of the caput-enriched genes, 16% were significantly down-regulated after gonadectomy, and of those genes, DHT supplementation did not maintain the initial level of expression in 28%. Identical data were obtained by clustering analyses performed for the expression data of epididymal genes. Furthermore, the microarray data revealed that 26 androgen receptor coregulators were expressed in the epididymis, of which several were confirmed by quantitative reverse transcriptase polymerase chain reaction analysis. This suggests putative involvement of these proteins in the segment-specific regulation of the epididymal genes. The pattern of epididymal gene expression in the novel proximal epididymis-specific androgen receptor knockout mouse ProxE-ARKO, with severe hypotrophy and hypoplasia of the caput epithelium, furthermore suggested that a subset of genes whose expression cannot be maintained by systemic androgen alone still require either direct lumicrine androgen action or a permissive effect of circulating testosterone. It is evident that testicular factors, one of which could be the high-concentration luminal androgen, are important for the expression of IS-enriched genes, whereas the expression of distal caput-enriched genes is typically regulated by systemic androgens.
  •  
7.
  • Toriseva, Mervi, et al. (författare)
  • RUNX transcription factors are essential in maintaining epididymal epithelial differentiation.
  • 2024
  • Ingår i: Cellular and molecular life sciences : CMLS. - 1420-9071. ; 81:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apart from the androgen receptor, transcription factors (TFs) that are required for the development and formation of the different segments of the epididymis have remained unknown. We identified TF families expressed in the developing epididymides, of which many showed segment specificity. From these TFs, down-regulation of runt related transcription factors (RUNXs) 1 and 2 expression coincides with epithelial regression in Dicer1 cKO mice. Concomitant deletion of both Runx1 and Runx2 in a mouse epididymal epithelial cell line affected cell morphology, adhesion and mobility in vitro. Furthermore, lack of functional RUNXs severely disturbed the formation of 3D epididymal organoid-like structures. Transcriptomic analysis of the epididymal cell organoid-like structures indicated that RUNX1 and RUNX2 are involved in the regulation of MAPK signaling, NOTCH pathway activity, and EMT-related gene expression. This suggests that RUNXs are master regulators of several essential signaling pathways, and necessary for the maintenance of proper differentiation of the epididymal epithelium.
  •  
8.
  • Turunen, Heikki T, et al. (författare)
  • Members of the murine Pate family are predominantly expressed in the epididymis in a segment-specific fashion and regulated by androgens and other testicular factors.
  • 2011
  • Ingår i: Reproductive biology and endocrinology : RB&E. - : Springer Science and Business Media LLC. - 1477-7827. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spermatozoa leaving the testis are not able to fertilize the egg in vivo. They must undergo further maturation in the epididymis. Proteins secreted to the epididymal lumen by the epithelial cells interact with the spermatozoa and enable these maturational changes, and are responsible for proper storage conditions before ejaculation. The present study was carried out in order to characterize the expression of a novel Pate (prostate and testis expression) gene family, coding for secreted cysteine-rich proteins, in the epididymis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy