SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sitch Sitch) "

Sökning: WFRF:(Sitch Sitch)

  • Resultat 1-10 av 62
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sitch, Stephen, et al. (författare)
  • Assessing the carbon balance of circumpolar Arctic tundra using remote sensing and process modeling
  • 2007
  • Ingår i: Ecological Applications. - : John Wiley & Sons. - 1051-0761 .- 1939-5582. ; 17:1, s. 213-234
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper reviews the current status of using remote sensing and process-based modeling approaches to assess the contemporary and future circumpolar carbon balance of Arctic tundra, including the exchange of both carbon dioxide and methane with the atmosphere. Analyses based on remote sensing approaches that use a 20-year data record of satellite data indicate that tundra is greening in the Arctic, suggesting an increase in photosynthetic activity and net primary production. Modeling studies generally simulate a small net carbon sink for the distribution of Arctic tundra, a result that is within the uncertainty range of field-based estimates of net carbon exchange. Applications of processbased approaches for scenarios of future climate change generally indicate net carbon sequestration in Arctic tundra as enhanced vegetation production exceeds simulated increases in decomposition. However, methane emissions are likely to increase dramatically, in response to rising soil temperatures, over the next century. Key uncertainties in the response of Arctic ecosystems to climate change include uncertainties in future fire regimes and uncertainties relating to changes in the soil environment. These include the response of soil decomposition and respiration to warming and deepening of the soil active layer, uncertainties in precipitation and potential soil drying, and distribution of wetlands. While there are numerous uncertainties in the projections of process-based models, they generally indicate that Arctic tundra will be a small sink for carbon over the next century and that methane emissions will increase considerably, which implies that exchange of greenhouse gases between the atmosphere and Arctic tundra ecosystems is likely to contribute to climate warming.
  •  
2.
  • Ahlström, Anders, et al. (författare)
  • The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 348:6237, s. 895-899
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.
  •  
3.
  • Anav, Alessandro, et al. (författare)
  • Spatiotemporal patterns of terrestrial gross primary production : A review
  • 2015
  • Ingår i: Reviews of geophysics. - 8755-1209 .- 1944-9208. ; 53:3, s. 785-818
  • Forskningsöversikt (refereegranskat)abstract
    • Great advances have been made in the last decade in quantifying and understanding the spatiotemporal patterns of terrestrial gross primary production (GPP) with ground, atmospheric, and space observations. However, although global GPP estimates exist, each data set relies upon assumptions and none of the available data are based only on measurements. Consequently, there is no consensus on the global total GPP and large uncertainties exist in its benchmarking. The objective of this review is to assess how the different available data sets predict the spatiotemporal patterns of GPP, identify the differences among data sets, and highlight the main advantages/disadvantages of each data set. We compare GPP estimates for the historical period (1990-2009) from two observation-based data sets (Model Tree Ensemble and Moderate Resolution Imaging Spectroradiometer) to coupled carbon-climate models and terrestrial carbon cycle models from the Fifth Climate Model Intercomparison Project and TRENDY projects and to a new hybrid data set (CARBONES). Results show a large range in the mean global GPP estimates. The different data sets broadly agree on GPP seasonal cycle in terms of phasing, while there is still discrepancy on the amplitude. For interannual variability (IAV) and trends, there is a clear separation between the observation-based data that show little IAV and trend, while the process-based models have large GPP variability and significant trends. These results suggest that there is an urgent need to improve observation-based data sets and develop carbon cycle modeling with processes that are currently treated either very simplistically to correctly estimate present GPP and better quantify the future uptake of carbon dioxide by the world's vegetation.
  •  
4.
  • Arneth, Almut, et al. (författare)
  • From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere
  • 2010
  • Ingår i: Biogeosciences. - 1726-4189. ; 7:1, s. 121-149
  • Forskningsöversikt (refereegranskat)abstract
    • Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.
  •  
5.
  • Arneth, A., et al. (författare)
  • Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed
  • 2017
  • Ingår i: Nature Geoscience. - : Springer Science and Business Media LLC. - 1752-0894 .- 1752-0908. ; 10:2, s. 79-84
  • Forskningsöversikt (refereegranskat)abstract
    • The terrestrial biosphere absorbs about 20% of fossil-fuel CO 2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO 2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change and CO 2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO 2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO 2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.
  •  
6.
  •  
7.
  •  
8.
  • Callaghan, TV, et al. (författare)
  • Key findings and extended summaries
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 386-392
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  • Callaghan, Terry V., et al. (författare)
  • Climate Change and UV-B Impacts on Arctic Tundra and Polar Desert Ecosystems: Key Findings and Extended Summaries
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 386-392
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic has become an important region in which to assess the impacts of current climate variability and amplification of projected global warming. This is because i) the Arctic has experienced considerable warming in recent decades (an average of about 3°C and between 4° and 5°C over much of the landmass); i) climate projections suggest a continuation of the warming trend with an increase in mean annual temperatures of 4–5°C by 2080; ii) recent warming is already impacting the environment and economy of the Arctic and these impacts are expected to increase and affect also life style, culture and ecosystems; and iv) changes occurring in the Arctic are likely to affect other regions of the Earth, for example changes in snow, vegetation and sea ice are likely to affect the energy balance and ocean circulation at regional and even global scales (Chapter 1 in ref. 1). Responding to the urgent need to understand and project impacts of changes in climate and UV-B radiation on many facets of the Arctic, the Arctic Climate Impact Assessment (ACIA) (1) undertook a four-year study. Part of this study (1–10) assessed the impacts of changes in climate and UV-B radiation on Arctic terrestrial ecosystems, both those changes already occurring and those likely to occur in the future. Here, we present the key findings of the assessment of climate change impacts on tundra and polar desert ecosystems, and xtended summaries of its components.
  •  
10.
  • Callaghan, Terry V., et al. (författare)
  • Effects of changes in climate on landscape and regional processes, and feedbacks to the climate system
  • 2004
  • Ingår i: Ambio: a Journal of Human Environment. - 0044-7447. ; 33:7, s. 459-468
  • Forskningsöversikt (refereegranskat)abstract
    • Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net effects of climate change on terrestrial feedbacks to the climate system. This uncertainty applies to magnitude, and even direction of some of the feedbacks.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 62
Typ av publikation
tidskriftsartikel (48)
forskningsöversikt (6)
konferensbidrag (5)
bokkapitel (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (58)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Sitch, Stephen (30)
Sitch, S. (25)
Ciais, Philippe (15)
Ahlström, Anders (15)
Smith, Benjamin (15)
Arneth, Almut (12)
visa fler...
Friedlingstein, Pier ... (11)
Viovy, Nicolas (11)
Zeng, Ning (9)
Bondeau, A. (9)
Hickler, Thomas (8)
Zaehle, S. (8)
Cramer, W. (8)
Huntingford, Chris (7)
Poulter, Benjamin (7)
Sykes, Martin (7)
Peylin, Philippe (7)
Zaehle, Soenke (7)
Jones, R. (6)
Ciais, P. (6)
Öberg, Sven (6)
Piao, Shilong (6)
Poulter, B. (6)
Friedlingstein, P. (6)
Viovy, N. (6)
Heggie, M.I. (5)
Canadell, Josep G. (5)
Prentice, IC (5)
Lucht, W (5)
Levis, S. (5)
Arneth, A. (4)
Chevallier, Frédéric (4)
Kato, Etsushi (4)
Wiltshire, Andy (4)
Zaehle, Sönke (4)
Li, Wei (4)
Anav, Alessandro (4)
Murray-Tortarolo, Gu ... (4)
Björn, Lars Olof (4)
Prentice, I. C. (4)
Thonicke, K. (4)
Christensen, Torben (4)
Lomas, Mark (4)
Pongratz, Julia (4)
Melton, Joe R. (4)
Poulter, Ben (4)
Lomas, Mark R. (4)
Levy, Peter E. (4)
Huntingford, C. (4)
Hantson, Stijn (4)
visa färre...
Lärosäte
Lunds universitet (49)
Luleå tekniska universitet (6)
Göteborgs universitet (2)
Umeå universitet (2)
Stockholms universitet (2)
Uppsala universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (61)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (61)
Teknik (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy