SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sitia G) "

Sökning: WFRF:(Sitia G)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Raccosta, L, et al. (författare)
  • Harnessing the reverse cholesterol transport pathway to favor differentiation of monocyte-derived APCs and antitumor responses
  • 2023
  • Ingår i: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 14:2, s. 129-
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.
  •  
2.
  • Armengaud, J., et al. (författare)
  • The Importance Of Naturally Attenuated Sars-Cov-2 In The Fight Against Covid-19
  • 2020
  • Ingår i: Environmental Microbiology. - : Wiley. - 1462-2912 .- 1462-2920. ; 22:6, s. 1997-2000
  • Tidskriftsartikel (refereegranskat)abstract
    • The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing, and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (1), but the earliest vaccines were based on live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (2). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy