SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skarsfeldt Mark) "

Sökning: WFRF:(Skarsfeldt Mark)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hiniesto Iñigo, Irene, et al. (författare)
  • Endocannabinoids enhance hKV7.1/KCNE1 channel function and shorten the cardiac action potential and QT interval
  • 2023
  • Ingår i: EBioMedicine. - : ELSEVIER. - 2352-3964. ; 89
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Genotype-positive patients who suffer from the cardiac channelopathy Long QT Syndrome (LQTS) may display a spectrum of clinical phenotypes, with often unknown causes. Therefore, there is a need to identify factors influencing disease severity to move towards an individualized clinical management of LQTS. One possible factor influencing the disease phenotype is the endocannabinoid system, which has emerged as a modulator of cardio-vascular function. In this study, we aim to elucidate whether endocannabinoids target the cardiac voltage-gated potassium channel KV7.1/KCNE1, which is the most frequently mutated ion channel in LQTS.Methods We used two-electrode voltage clamp, molecular dynamics simulations and the E4031 drug-induced LQT2 model of ex-vivo guinea pig hearts.Findings We found a set of endocannabinoids that facilitate channel activation, seen as a shifted voltage-dependence of channel opening and increased overall current amplitude and conductance. We propose that negatively charged endocannabinoids interact with known lipid binding sites at positively charged amino acids on the channel, providing structural insights into why only specific endocannabinoids modulate KV7.1/KCNE1. Using the endocannabinoid ARA-S as a prototype, we show that the effect is not dependent on the KCNE1 subunit or the phosphorylation state of the channel. In guinea pig hearts, ARA-S was found to reverse the E4031-prolonged action potential duration and QT interval. Interpretation We consider the endocannabinoids as an interesting class of hKV7.1/KCNE1 channel modulators with putative protective effects in LQTS contexts.Copyright (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
2.
  • Liin, Sara, et al. (författare)
  • Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac I-Ks channel
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:18, s. 5714-5719
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the beta-subunit KCNE1 form the cardiac I-Ks channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as I-Ks channel modulators. We report that PUFAs open Kv7.1 via an electrostatic mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pK(a) value, to preserve their negative charge at neutral pH, restore the sensitivity to open I-Ks channels. PUFA analogs with a positively charged head group inhibit I-Ks channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act antiarrhythmically in embryonic rat cardiomyocytes and in isolated perfused hearts from guinea pig.
  •  
3.
  • Skarsfeldt, Mark, et al. (författare)
  • Polyunsaturated fatty acid-derivedI(Ks)channel activators shorten the QT interval ex-vivo and in-vivo
  • 2020
  • Ingår i: Acta Physiologica. - : WILEY. - 1748-1708 .- 1748-1716. ; 229:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim We aimed to assess the ability of natural and modified polyunsaturated fatty acids (PUFAs) to shorten QT interval in ex-vivo and in-vivo guinea pig hearts. Methods The effect of one natural (docosahexaenoic acid [DHA]) and three modified (linoleoyl glycine [Lin-GLY], docosahexaenoyl glycine [DHA-GLY], N-arachidonoyl taurine [N-AT]) PUFAs on ventricular action potential duration (APD) and QT interval was studied in a E4031 drug-induced long QT2 model of ex-vivo guinea pig hearts. The effect of DHA-GLY on QT interval was also studied in in-vivo guinea pig hearts upon intravenous administration. The effect of modified PUFAs onI(Ks)was studied usingXenopus laevisoocytes expressing human KCNQ1 and KCNE1. Results All tested PUFAs shortened ADP and QT interval in ex-vivo guinea pig hearts, however, with different ability in restoring baseline APD/QT interval with specific modified PUFAs being most efficacious. Despite comparable ability in activating the human KCNQ1/KCNE1 channel, Lin-GLY was not as effective in shortening APD/QT interval as DHA-GLY in ex-vivo hearts. By constructing a guinea pig-like KCNE1, we found Lin-GLY to induce less activating effect compared with DHA-GLY on human KCNQ1 co-expressed with guinea pig-like KCNE1. Docosahexaenoyl glycine was studied in more detail and was found to shorten QT interval in in-vivo guinea pig hearts. Conclusion Our results show that specific PUFAs shorten QT interval in guinea pig hearts. The tendency of modified PUFAs with pronouncedI(Ks)channel activating effect to better restore QT interval suggests that modifying PUFAs to target theI(Ks)channel is a means to improve the QT-shortening effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy