SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skelly T) "

Sökning: WFRF:(Skelly T)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
4.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Pinheiro, AP, et al. (författare)
  • AKT1 and neurocognition in schizophrenia
  • 2007
  • Ingår i: The Australian and New Zealand journal of psychiatry. - : SAGE Publications. - 0004-8674 .- 1440-1614. ; 41:2, s. 169-177
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Previous research has shown conflicting results for the significance of five v-akt murine thymoma viral oncogene homolog 1 ( AKT1) single-nucleotide polymorphisms (SNPs) to the aetiology of schizophrenia. Neurocognition is a plausible endophenotype for schizophrenia and it was reasoned that the lack of agreement might be due to variability in neurocognition across studies. Therefore, the association of genetic variation in AKT1 with neurocognition was investigated in patients with schizophrenia. Methods: The same five SNPs used in previous studies of the etiology of schizophrenia (rs2494732, rs2498799, rs3730358, rs1130241, and rs3803300) were genotyped in 641 individuals with schizophrenia who had participated in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project. The primary dependent variable was a neurocognitive composite score and exploratory analyses investigated five domain scores (processing speed, reasoning, verbal memory, working memory, and vigilance). Results: There were no significant asymptotic or empirical associations between any SNP and the neurocognitive composite score. The authors also investigated the association of five-SNP haplotypes with the neurocognitive composite score. A marginally significant association was observed for the neurocognitive composite score with one of the five-SNP haplotypes (global score statistic 19.51, df = 9, permutation p = 0.02). Exploratory analyses of five domain scores (processing speed, reasoning, verbal memory, working memory, and vigilance) were non-significant for all five SNPs. Conclusion: Results published to date for an association between genetic variation in AKT1 with schizophrenia are inconsistent. The results suggest that the AKT1 markers studied are not associated with neurocognition in schizophrenia, and do not support unassessed variation in neurocognitive scores as a reason for this discrepancy.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy