SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skini Ridha) "

Sökning: WFRF:(Skini Ridha)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ghorai, Sagar, et al. (författare)
  • Effect of reduced local lattice disorder on the magnetic properties of B-site substituted La0.8Sr0.2MnO3
  • 2021
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier. - 0304-8853 .- 1873-4766. ; 529
  • Tidskriftsartikel (refereegranskat)abstract
    • Disorder induced by chemical inhomogeneity and Jahn-Teller (JT) distortions is often observed in mixed valence perovskite manganites. The main reasons for the evolution of this disorder are connected with the cationic size differences and the ratio between JT active and non-JT active ions. The quenched disorder leads to a spin-cluster state above the magnetic transition temperature. The effect of Cu, a B-site substitution in the La0.8Sr0.2MnO3 compound, on the disordered phase has been addressed here. X-ray powder diffraction reveals rhombohedral (R-3c) structures for both the parent and B-site substituted compound with negligible change of lattice volume. The chemical compositions of the two compounds were verified by ion beam analysis technique. With the change of electronic bandwidth, the magnetic phase transition temperature has been tuned towards room temperature (318 K), an important requirement for room temperature magnetic refrigeration. However, a small decrease of the isothermal entropy change was observed with Cu-substitution, related to the decrease of the saturation magnetization.
  •  
2.
  • Ghorai, Sagar, et al. (författare)
  • Effect of small cation occupancy and anomalous Griffiths phase disorder in nonstoichiometric magnetic perovskites
  • 2022
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 895
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural, magnetic, magnetocaloric and Griffiths phase (GP) disorder of non-stoichiometric perovskite manganites La0.8-xSr0.2-yMn1+x+yO3 are reported here. Determination of valence states and structural phases evidenced that the smaller cations Mn2+ and Mn3+ will not occupy the A-site of a perovskite under atmospheric synthesis conditions. The same analysis also supports that the vacancy in the A-site of a perovskite induces a similar vacancy in the B-site. The La3+ and Sr2+ cation substitutions in the A-site with vacancy influences the magnetic phase transition temperature (TC) inversely, which is explained in terms of the electronic bandwidth change. An anomalous non-linear change of the GP has been observed in the Sr substituted compounds. The agglomeration of Mn3+-Mn4+ pairs (denoted as dimerons), into small ferromagnetic clusters, has been identified as the reason for the occurrence of the GP. A threshold limit of the dimeron formation explains the observed non-linear behaviour of the GP formation. The Sr-substituted compounds show a relatively large value of isothermal entropy change (maximum 3.27 J/kgK at mu H-0 = 2T) owing to its sharp magnetic transition, while the broad change of magnetization in the La-substituted compound enhances the relative cooling power (maximum 98 J/kg at mu H-0 = 2T).
  •  
3.
  • Ghorai, Sagar, et al. (författare)
  • Evolution of Griffiths phase and critical behaviour of La1-xPbxMnO3 +/- y solid solutions
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 0953-8984 .- 1361-648X. ; 33:14
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycrystalline La1-xPbxMnO3 +/- y (x = 0.3, 0.35, 0.4) solid solutions were prepared by solid state reaction method and their magnetic properties have been investigated. Rietveld refinement of x-ray powder diffraction patterns showed that all samples are single phase and crystallized with the rhombohedral structure in the R-3c space group. A second order paramagnetic to ferromagnetic (FM) phase transition was observed for all materials. The Griffiths phase (GP), identified from the temperature dependence of the inverse susceptibility, was suppressed by increasing magnetic field and showed a significant dependence on A-site chemical substitution. The critical behaviour of the compounds was investigated near to their Curie temperatures, using intrinsic magnetic field data. The critical exponents (beta, gamma and delta) are close to the mean-field approximation values for all three compounds. The observed mean-field like behaviour is a consequence of the GP and the formation of FM clusters. Long-range FM order is established as the result of long-range interactions between FM clusters. The magnetocaloric effect was studied in terms of the isothermal entropy change. Our study shows that the material with the lowest chemical substitution (x = 0.3) has the highest potential (among the three compounds) as magnetic refrigerant, owing to its higher relative cooling power (258 J kg(-1) at 5 T field) and a magnetic phase transition near room temperature.
  •  
4.
  • Ghorai, Sagar, et al. (författare)
  • Field induced crossover in critical behaviour and direct measurement of the magnetocaloric properties of La0.4Pr0.3Ca0.1Sr0.2MnO3
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • La0.4Pr0.3Ca0.1Sr0.2MnO3 has been investigated as a potential candidate for room temperature magnetic refrigeration. Results from X-ray powder diffraction reveal an orthorhombic structure with Pnma space group. The electronic and chemical properties have been confirmed by X-ray photoelectron spectroscopy and ion-beam analysis. A second-order paramagnetic to ferromagnetic transition was observed near room temperature (289 K), with a mean-field like critical behaviour at low field and a tricritical mean-field like behaviour at high field. The field induced crossover in critical behaviour is a consequence of the system being close to a first-order magnetic transition in combination with a magnetic field induced suppression of local lattice distortions. The lattice distortions consist of interconnected and weakly distorted pairs of Mn-ions, where each pair shares an electron and a hole, dispersed by large Jahn–Teller distortions at Mn3+ lattice sites. A comparatively high value of the isothermal entropy-change (3.08 J/kg-K at 2 T) is observed and the direct measurements of the adiabatic temperature change reveal a temperature change of 1.5 K for a magnetic field change of 1.9 T.
  •  
5.
  •  
6.
  • Skini, Ridha, et al. (författare)
  • Large room temperature relative cooling power in La0.5Pr0.2Ca0.1Sr0.2MnO3
  • 2020
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388 .- 1873-4669. ; 827
  • Tidskriftsartikel (refereegranskat)abstract
    • The La0.5Pr0.2Ca0.1Sr0.2MnO3 compound has been investigated as a potential candidate for room temperature magnetocaloric refrigeration. The Rietveld refinement of X-ray powder diffraction patterns confirms that the compound crystalizes in an orthorhombic phase with the Pnma space group. Rutherford backscattering spectrometry and time-of-flight elastic recoil detection analysis, verified the desired ratio of the elements in the compound. Using X-ray photoelectron spectroscopy two oxidation states of manganese (Mn), Mn4+ and Mn3+ were identified in the compound with relative amounts of 32% and 68%, respectively. The observed spin orbit splitting of the Mn-2p3/2 and Mn-2p1/2 levels was obtained as 11.7 eV. A ferromagnetic to paramagnetic transition was observed around 296 K, which makes the material interesting for magnetic cooling near room temperature. In addition, the absence of magnetic hysteresis provides another argument in favor of the studied compound. The isothermal entropy change (-deltaSm) and the relative cooling power (RCP) for a magnetic field change of 5 T were found to be 4 J/kg K and 372 J/kg, respectively. From the comparison of the values of (-deltaSm) and RCP with those obtained for the archetypal magnetocaloric material gadolinium, it is argued that our material can be considered as a potential candidate in cooling systems based on magnetic refrigeration.
  •  
7.
  • Skini, Ridha, et al. (författare)
  • Magnetocaloric effect and critical behavior in La0.8K0.2MnO3 nanoparticle
  • 2021
  • Ingår i: RESULTS IN PHYSICS. - : Elsevier. - 2211-3797. ; 30
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the magnetocaloric effect and critical phenomenon on La0.8K0.2MnO3 nanoparticle through a systematic magnetic and electrical measurement. The magnetic entropy change (Delta S-M) presents close values obtained from resistivity and magnetic measurements, however, with a discrepancy in the magnetic entropy maximum values. This discrepancy is due to the presence of an extrinsic effect associated with the nanometric grain size affecting the electrical behavior. Interestingly, our results show a good agreement with the calculation of the critical exponents and the temperature coefficient of resistance shows positive and negative values. The obtained critical exponents are close to that of the mean-field theory (with beta = 0.5, gamma = 1, and delta = 3). This indicates a long-range interaction between spins a consequence of the presence the presence of dipole- dipole interaction in this system.
  •  
8.
  • Skini, Ridha, et al. (författare)
  • Transport and magneto-transport properties in La0.8K0.2-xxMnO3-delta (x =0 and 0.1) manganites
  • 2019
  • Ingår i: Journal of materials science. Materials in electronics. - : SPRINGER. - 0957-4522 .- 1573-482X. ; 30:18, s. 17363-17373
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the effect of the nanometric grain size on the behavior of the electrical and magnetoresistive response of La0.8K0.2-xxMnO3-delta (x = 0 and 0.1) nanocrystalline samples that were prepared by a sol-gel method. The results from transport and magneto-transport measurements evidence a robust dependence on the nanometric grain size. The temperature dependence of the resistivity was evaluated using different transport models. The results reveal a field-dependent minimum of the resistivity in the low-temperature region, which can be described in terms of intergranular spin-polarized tunneling. Remarkably, a considerable increase of the magnetoresistance (MR) with the decrease of nanoparticle size was found, which might open a new way for the search for potential candidates for magnetoresistive devices. Besides, the magnetic field dependence of the MR was also analyzed, and a distinct drop of MR at low fields was noticed. This behavior was primarily explained by the spin-polarized tunneling transport of conduction electrons across grain boundaries.
  •  
9.
  • Tozri, A., et al. (författare)
  • Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO3
  • 2022
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier. - 0925-8388 .- 1873-4669. ; 890
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on structural, magnetic properties of Na-doped La0.8Sr0.15Na0.05MnO3 (LSNMO) nanoparticles (NP) with size about 50 nm elaborated via sol-gel route. The chemical composition was verified using the energy dispersive X-ray analysis (EDAX) and by X-ray photoelectron spectroscopy (XPS). Magnetic characterizations demonstrate that LSMNO exhibits a coexistence of interacting superparamagnetic (ISPM) phase with blocking temperature T-B = 194 K and a ferromagnetic phase with Curie temperature T-C = 255.5 K. At low temperatures, the SPM state undergoes a collective freezing state at T-f = 46 K. the high-temperature regime (well above TC) reveals that NP-LSNMO has a strengthened Griffiths-like phase compared to their bulk counterpart. An itemized investigation of the critical behavior of the material was carried out in the vicinity of T-C. The critical exponents [beta = 0.546(7), gamma = 0.972(6), and delta = 2.94 (5)] were found to be in close agreement with of the mean-field theory. The maximum magnetic entropy change (-Delta(pk)(M)) is about 1.41 Jkg(-1) K-1 and the refrigeration capacity (RC) is 288 Jkg(-1) for a field change of 5 T at T = 215 K. This magnetocaloric response is reasonably high for nanomaterials and, together with its cost-effectiveness, makes NP LSMNO a potential candidate material for active magnetic refrigerators. Besides, the ISPM properties are desirable for hyperthermia applications. Our findings suggest that the magnetic inhomogeneity and the dipolar interaction between the SPM and FM phases in the range T-B < T < T-C are crucial factors in determining the magnetic properties of NP-LSNMO. (C) 2021 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy