SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skov Anders B.) "

Sökning: WFRF:(Skov Anders B.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansen, Joan H., et al. (författare)
  • Ecological consequences of animal migration : Prey partial migration affects predator ecology and prey communities
  • 2020
  • Ingår i: Ecosystems. - : Springer Nature. - 1432-9840 .- 1435-0629. ; 23:2, s. 292-306
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterns of animal migration and the ecological forces that shape them have been studied for centuries. Yet ecological impacts caused by the migration, such as altered predator–prey interactions and effects on community structure, remain poorly understood. This is to a large extent due to the scarcity of naturally replicated migration systems with negative controls, that is, ecosystems without migration. In this study, we tested whether partial migration of certain species within the overall prey community affects foraging ecology of top predators and thereby alters energy pathways in food webs. We carried out the study in independent replicated freshwater lake systems, four with and four without opportunity for prey migration. Specifically, we compared predator foraging mode in lakes where cyprinid prey fish perform seasonal partial migrations into connected streams with lakes lacking migratory opportunities for prey fish. We found clear seasonal bottom-up effects of prey migration on predators, including changes in size structure and total biomass of ingested prey, size-specific changes in littoral versus pelagic origin of diet, and a higher degree of feast-and-famine for predators in systems with migratory prey. Our analyses further showed that partially migratory prey species constitute a larger part of the prey community in systems that allow migration. Hence, prey migrations have important implications for predator foraging ecology and may cause seasonal shifts in the importance of their supporting energy pathways. We suggest that such bottom-up effects of partial migration may be a widespread phenomenon both in aquatic and in terrestrial ecosystems. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
  •  
2.
  • Hulthén, Kaj, et al. (författare)
  • A predation cost to bold fish in the wild
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of predator-mediated selection on behaviour are critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations. Consistent individual differences in prey behaviour, especially in the propensity to take risks (“boldness”), are widespread in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions is challenging and there is currently little data from the wild. We assayed individual behaviour and electronically tagged hundreds of fish (roach, Rutilus rutilus) before releasing them into their lake of origin, thereby exposing them to predation risk from avian apex predators (cormorants, Phalacrocorax carbo). Scanning for regurgitated tags at the cormorant roosting site provided data on individual predation events. We found that fish with higher boldness have a greater susceptibility to cormorant predation compared to relatively shy, risk-averse individuals. Our findings hereby provide unique and direct evidence of behavioural type-dependent predation vulnerability in the wild, i.e. that there is a predation cost to boldness, which is critical for our understanding of the evolution and maintenance of behavioural diversity in natural populations.
  •  
3.
  • Hulthén, Kaj, et al. (författare)
  • Timing and synchrony of migration in a freshwater fish : Consequences for survival
  • 2022
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 91:10, s. 2103-2112
  • Tidskriftsartikel (refereegranskat)abstract
    • Animal migration is one of the most spectacular and visible behavioural phenomena in nature with profound implications for a range of ecological and evolutionary processes. Successful migration hinges on the ability to exploit temporary resources (e.g. food) and evade threats (e.g. predators) as they arise, and thus the timing of migration is often regarded as a dominant predictor of individual migratory success. However, with the exception of intensively studied taxa (mainly birds), relatively few studies have investigated inter-individual annual and seasonal variation in migratory timing and performance, or tested predictions on how migration across high and low predation-risk habitats may exert selection on migratory timing. In particular, studies that assess the survival consequences of variation in migratory timing remain rare, which is most likely due to the logistical challenges associated with monitoring survival success and population-level characteristics simultaneously. Here, we address the above-mentioned questions using roach Rutilus rutilus, a fish that migrates from lakes characterised by high predation risk into low-risk streams during winter. Specifically, we used individual-based tracking of roach in two European lake systems over multiple migration periods (9 and 7 years respectively), to obtain highly detailed (year-round scheduling, repeat journeys and the fate of individuals) data on the variability/synchrony of migratory timing in spring and autumn respectively. We report seasonal differences in the variability of migratory timing, with lower variance and higher migration synchrony in spring lake arrival timing as compared to autumn lake departure timing. Furthermore, the timing of autumn migration is more variable across years than the timing of spring migration. Second, we find that later arrival to the lake habitat is positively associated with apparent survival from 1 year to the next, whereas we found no effect of lake departure timing on survival probability. These findings represent rare evidence showing how intraspecific variation in timing in migratory fish differs across years and seasons, and how variation in timing can translate into survival consequences for prey in systems characterised by high predation risk.
  •  
4.
  • Nilsson, Per Anders, 1968-, et al. (författare)
  • Species integrity enhanced by a predation cost to hybrids in the wild
  • 2017
  • Ingår i: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 13:7, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Species integrity can be challenged, and even eroded, if closely related species can hybridize and produce fertile offspring of comparable fitness to that of par- ental species. The maintenance of newly diverged or closely related species therefore hinges on the establishment and effectiveness of pre- and/or post- zygotic reproductive barriers. Ecological selection, including predation, is often presumed to contribute to reduced hybrid fitness, but field evidence for a predation cost to hybridization remains elusive. Here we provide proof-of- concept for predation on hybrids being a postzygotic barrier to gene flow in the wild. Cyprinid fishes commonly produce fertile, viable hybrid offspring and therefore make excellent study organisms to investigate ecological costs to hybrids. We electronically tagged two freshwater cyprinid fish species (roach Rutilus rutilus and bream Abramis brama) and their hybrids in 2005. Tagged fish were returned to their lake of origin, exposing them to natural predation risk from apex avian predators (great cormorant, Phalacrocorax carbo). Scanning for regurgitated tags under cormorant roosts 3–4 years later ident- ified cormorant-killed individual fish and allowed us to directly test for a predation cost to hybrids in the wild. Hybrid individuals were found significantly more susceptible to cormorant predation than individuals from either parental species. Such ecological selection against hybrids contributes to species integrity, and can enhance species diversification.
  •  
5.
  • Pärssinen, Varpu, et al. (författare)
  • Maladaptive migration behaviour in hybrids links to predator-mediated ecological selection
  • 2020
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 89:11, s. 2596-2604
  • Tidskriftsartikel (refereegranskat)abstract
    • Different migratory species have evolved distinct migratory characteristics that improve fitness in their particular ecological niches. However, when such species hybridize, migratory traits from parental species can combine maladaptively and cause hybrids to fall between parental fitness peaks, with potential consequences for hybrid viability and species integrity. Here, we take advantage of a natural cross-breeding incident to study migratory behaviour in naturally occurring hybrids as well as in their parental species and explore links between migratory traits and predation risk. To achieve this, we used electronic tags and passive telemetry to record detailed individual migration patterns (timing and number of migratory trips) in two common freshwater fish species, roachRutilus rutilus, common breamAbramis bramaas well as their hybrids. Next, we scanned for tags regurgitated by a key avian predator (great cormorantPhalacrocorax carbo) at nearby roosting sites, allowing us to directly link migratory behaviour to predation risk in the wild. We found that hybrid individuals showed a higher number of short, multi-trip movements between lake and stream habitats as compared to both parental species. The mean date of first lake departure differed between bream and roach by more than 10 days, while hybrids departed in two distinct peaks that overlapped with the parental species' averages. Moreover, the probability of cormorant predation increased with multi-trip movement frequency across species and was higher for hybrids. Our data provide novel insights into hybrid viability, with links to predator-mediated ecological selection. Increased exposure to predators via maladaptive migratory behaviour reduces hybrid survival and can thereby reinforce species integrity.
  •  
6.
  • Skov, Anders B., et al. (författare)
  • Excited‐State Topology Modifications of the Dihydroazulene Photoswitch Through Aromaticity
  • 2019
  • Ingår i: ChemPhotoChem. - : Wiley. - 2367-0932. ; 3:8, s. 619-629
  • Tidskriftsartikel (refereegranskat)abstract
    • The gain and loss of aromaticity plays a key role in organic chemistry and in the prediction of rate‐determining steps. Herein, we explore the concept of aromaticity in photoisomerization reactions. Benzannulated derivatives of the dihydroazulene‐vinylheptafulvene (DHA‐VHF) photoswitch were investigated using transient absorption spectroscopy and time‐dependent density functional theory to elucidate the effect of built‐in aromaticity on the switching properties. We found that benzannulation hampered the switching ability by enhancing an already existing barrier on the excited state surface. This enhancement was found to arise from a significant loss of aromaticity in the DHA‐to‐VHF transition state on the excited state potential energy surface. The VHF was found to be highly aromatic on the excited state surface, showing a reversal of aromaticity compared to the ground state. The barrier was found to be dependent on the position of benzannulation, since one derivative was found to switch as fast as the non‐benzannulated molecule although with lower efficiency, whereas another derivative completely lost the ability to undergo reversible photoswitching. The findings herein provide novel principles for the design of molecular photoswitches, shedding new light on excited state aromaticity, as previous discussions have mainly considered excited state aromaticity to be beneficial to switching. Our findings show that this view must be reconsidered.
  •  
7.
  • Skov, Christian, et al. (författare)
  • A field evaluation of long-term effects of PIT tagging
  • 2020
  • Ingår i: Journal of Fish Biology. - : Wiley. - 0022-1112 .- 1095-8649. ; 96:4, s. 1055-1059
  • Tidskriftsartikel (refereegranskat)abstract
    • Passive integrated transponder (PIT)-tagging is commonly used in behavioural studies of fish, although long-term evaluations of effects from tagging under natural conditions are scarce. We PIT-tagged common bream Abramis brama, European perch Perca fluviatilis, pike Esox lucius and roach Rutilus rutilus, released them in their lakes of origin and recaptured them after 103–3269 days. Overall, tagged fish did not differ in condition from non-tagged fish, except for small R. rutilus that had a lower length-specific body mass in one lake in 1 year. We conclude that PIT-tagging in general has negligible long-term effects on fish condition.
  •  
8.
  • Skov, Christian, et al. (författare)
  • Biomanipulating streams : A supplementary tool in lake restoration
  • 2019
  • Ingår i: Hydrobiologia. - : Springer. - 0018-8158 .- 1573-5117. ; 829:1, s. 205-216
  • Tidskriftsartikel (refereegranskat)abstract
    • Removal of cyprinid fish is a widely used biomanipulation tool to transform turbid shallow eutrophic lakes in north temperate regions into a clear water state. We here evaluate the removal of cyprinids from streams as a supplement to lake fishing. Since cyprinids often aggregate in high densities in lake inlet/outlet streams during winter migration, removal of fish in this space-confined habitat may be cost-efficient as compared to fish removal in the lake habitat. In two consecutive years, we annually removed up to 35% of the dominant cyprinids from an inlet stream to a lake and argue that this could easily be increased with a more targeted fishing effort. Concurrently, we monitored species- and length-specific variation in migration propensity, to explore how this relates to efficient fish removal. Smaller planktivores generally had a much higher migratory propensity than larger benthivores. Hence, stream fishing specifically targets species and size groups that are less efficiently controlled with traditional lake fishing methods. As a rule of thumb, stream fishing is most efficient when water temperature is 2–6°C. Prior to implementing fish removals from streams, the potential evolutionary consequences of the targeted removal of migratory phenotypes should be considered. 
  •  
9.
  • Skov, Christian, et al. (författare)
  • Sizing up your enemy : individual predation vulnerability predicts migratory probability
  • 2011
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 278, s. 1414-1418
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in anextensive range of species and can have powerful ecological consequences. The question of what drivesdifferences in individual migratory tendency is a contentious one. It has been shown that the timing ofpartial migration is based upon a trade-off between seasonal fluctuations in predation risk and growthpotential. Phenotypic variation in either individual predation risk or growth potential should thus mediatethe strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e.which individuals migrate and which remain resident). We provide cross-population empirical support forthe importance of one component of this model—individual predation risk—in predicting partialmigration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individualsmigrate with a higher probability than larger, low-risk individuals, and we suggest that predation riskmaintains size-dependent partial migration in this system.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy