SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skov Kirstine) "

Sökning: WFRF:(Skov Kirstine)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • López-Blanco, Efrén, et al. (författare)
  • Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics
  • 2020
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9318 .- 1748-9326. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic tundra is a globally important store for carbon (C). However, there is a lack of reference sites characterising C exchange dynamics across annual cycles. Based on the Greenland Ecosystem Monitoring (GEM) programme, here we present 9-11 years of flux and ecosystem data across the period 2008-2018 from two wetland sites in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). The Zackenberg fen was a strong C sink despite its higher latitude and shorter growing seasons compared to the Kobbefjord fen. On average the ecosystem in Zackenberg took up ∼-50 g C m-2 yr-1 (range of +21 to-90 g C m-2 yr-1), more than twice that of Kobbefjord (mean ∼-18 g C m-2 yr-1, and range of +41 to-41 g C m-2 yr-1). The larger net carbon sequestration in Zackenberg fen was associated with higher leaf nitrogen (71%), leaf area index (140%), and plant quality (i.e. C:N ratio; 36%). Additional evidence from in-situ measurements includes 3 times higher levels of dissolved organic carbon in soils and 5 times more available plant nutrients, including dissolved organic nitrogen (N) and nitrates, in Zackenberg. Simulations using the soil-plant-atmosphere ecosystem model showed that Zackenberg's stronger CO2 sink could be related to measured differences in plant nutrients, and their effects on photosynthesis and respiration. The model explained 69% of the variability of net ecosystem exchange of CO2, 80% for photosynthesis and 71% for respiration over 11 years at Zackenberg, similar to previous results at Kobbefjord (73%, 73%, and 50%, respectively, over 8 years). We conclude that growing season limitations of plant phenology on net C uptake have been more than counterbalanced by the increased leaf nutrient content at the Zackenberg site.
  •  
2.
  • Pirk, Norbert, et al. (författare)
  • Toward a statistical description of methane emissions from arctic wetlands
  • 2017
  • Ingår i: Ambio: a Journal of Human Environment. - : Springer Science and Business Media LLC. - 0044-7447. ; 46, s. 70-80
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from arctic tundra typically follow relations with soil temperature and water table depth, but these process-based descriptions can be difficult to apply to areas where no measurements exist. We formulated a description of the broader temporal flux pattern in the growing season based on two distinct CH4 source components from slow and fast-turnover carbon. We used automatic closed chamber flux measurements from NE Greenland (74°N), W Greenland (64°N), and Svalbard (78°N) to identify and discuss these components. The temporal separation was well-suited in NE Greenland, where the hypothesized slow-turnover carbon peaked at a time significantly related to the timing of snowmelt. The temporally wider component from fast-turnover carbon dominated the emissions in W Greenland and Svalbard. Altogether, we found no dependence of the total seasonal CH4 budget to the timing of snowmelt, and warmer sites and years tended to yield higher CH4 emissions.
  •  
3.
  • Ström, Lena, et al. (författare)
  • Controls of spatial and temporal variability in CH4 flux in a high arctic fen over three years
  • 2015
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 1573-515X .- 0168-2563. ; 125:1, s. 21-35
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to establish the main drivers of the spatial variability in growing season CH4 flux within an arctic wetland ecosystem. During 3 years (2011-2013) we measured CH4 flux and potential drivers, e.g., CO2 fluxes (net ecosystem exchange (NEE), gross primary productivity (GPP) and ecosystem respiration), temperature, water table depth, pore-water concentration of organic acids (e.g., acetate) and the vascular plant composition and density. The study included 16-20 main plots (C-main) and in 2013 also experimental plots (10 excluded muskoxen grazing, 9 snow fence and 10 automated chamber plots) distributed over 0.3 km(2). The results show a 1.8-times difference in CH4 flux magnitude inter-annually and 9- to 35-times spatially (depending on year and treatment). During all 3 years GPP was a strong driver of the variability in C-main plots. Accordingly, the plant productivity related variables NEE, GPP and acetate were singled out as the strongest drivers of the variability in 2013, when all variables were measured on a majority of the plots. These variables were equally strong drivers of the spatial variability in CH4 flux regardless of whether experimental plots were included in the analysis or not. The density of Eriophorum scheuchzeri was the strongest driver of the spatial variability in NEE, GPP and acetate. In conclusion, changes in vegetation composition or productivity of wet arctic ecosystems will have large impacts on their carbon balance and CH4 flux, irrespective of whether these changes are driven directly by climate change or by biotic interactions, such as grazing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy