SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Skyrman Simon) "

Sökning: WFRF:(Skyrman Simon)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fytagoridis, Anders, et al. (författare)
  • Surgical Replacement of Implantable Pulse Generator in Deep Brain Stimulation : Adverse Events and Risk Factors in a Multicenter Cohort
  • 2016
  • Ingår i: Stereotactic and Functional Neurosurgery. - : S. Karger AG. - 1011-6125 .- 1423-0372. ; 94:4, s. 235-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Deep brain stimulation (DBS) is a growing treatment modality, and most DBS systems require replacement of the implantable pulse generator (IPG) every few years. The literature regarding the potential impact of adverse events of IPG replacement on the longevity of DBS treatments is rather scarce. Objective: To investigate the incidence of adverse events, including postoperative infections, associated with IPG replacements in a multicenter cohort. Methods: The medical records of 808 patients from one Australian and five Swedish DBS centers with a total of 1,293 IPG replacements were audited. A logistic regression model was used to ascertain the influence of possible predictors on the incidence of adverse events. Results: The overall incidence of major infections was 2.3% per procedure, 3.7% per patient and 1.7% per replaced IPG. For 28 of 30 patients this resulted in partial or complete DBS system removal. There was an increased risk of infection for males (OR 3.6, p = 0.026), and the risk of infection increased with the number of prior IPG replacements (OR 1.6, p < 0.005). Conclusions: The risk of postoperative infection with DBS IPG replacement increases with the number of previous procedures. There is a need to reduce the frequency of IPG replacements.
  •  
2.
  •  
3.
  • Skyrman, Simon (författare)
  • Advanced cranial navigation
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Neurosurgery is performed with extremely low margins of error. Surgical inaccuracy may have disastrous consequences. The overall aim of this thesis was to improve accuracy in cranial neurosurgical procedures by the application of new technical aids. Two technical methods were evaluated: augmented reality (AR) for surgical navigation (Papers I-II) and the optical technique of diffuse reflectance spectroscopy (DRS) for real-time tissue identification (Papers III-V). Minimally invasive skull-base endoscopy has several potential benefits compared to traditional craniotomy, but approaching the skull base through this route implies that at-risk organs and surgical targets are covered by bone and out of the surgeon’s direct line of sight. In Paper I, a new application for AR-navigated endoscopic skull-base surgery, based on an augmented-reality surgical navigation (ARSN) system, was developed. The accuracy of the system, defined by mean target registration error (TRE), was evaluated and found to be 0.55±0.24 mm, the lowest value reported error in the literature. As a first step toward the development of a cranial application for AR navigation, in Paper II this ARSN system was used to enable insertions of biopsy needles and external ventricular drainages (EVDs). The technical accuracy (i.e., deviation from the target or intended path) and efficacy (i.e., insertion time) were assessed on a 3D-printed realistic, anthropomorphic skull and brain phantom; Thirty cranial biopsies and 10 EVD insertions were performed. Accuracy for biopsy was 0.8±0.43 mm with a median insertion time of 149 (87-233) seconds, and for EVD accuracy was 2.9±0.8 mm at the tip with a median angular deviation of 0.7±0.5° and a median insertion time of 188 (135-400) seconds. Glial tumors grow diffusely in the brain, and patient survival is correlated with the extent of tumor removal. Tumor borders are often invisible. Resection beyond borders as defined by conventional methods may further improve a patient’s prognosis. In Paper III, DRS was evaluated for discrimination between glioma and normal brain tissue ex vivo. DRS spectra and histology were acquired from 22 tumor samples and 9 brain tissue samples retrieved from 30 patients. Sensitivity and specificity for the detection of low-grade gliomas were 82.0% and 82.7%, respectively, with an AUC of 0.91. Acute ischemic stroke caused by large vessel occlusion is treated with endovascular thrombectomy, but treatment failure can occur when clot composition and thrombectomy technique are mismatched. Intra-procedural knowledge of clot composition could guide the choice of treatment modality. In Paper IV, DRS, in vivo, was evaluated for intravascular clot characterization. Three types of clot analogs, red blood cell (RBC)-rich, fibrin-rich and mixed clots, were injected into the external carotids of a domestic pig. An intravascular DRS probe was used for in-situ measurements of clots, blood, and vessel walls, and the spectral data were analyzed. DRS could differentiate clot types, vessel walls, and blood in vivo (p<0,001). The sensitivity and specificity for detection were 73.8% and 98.8% for RBC clots, 100% and 100% for mixed clots, and 80.6% and 97.8% for fibrin clots, respectively. Paper V evaluated DRS for characterization of human clot composition ex vivo: 45 clot units were retrieved from 29 stroke patients and examined with DRS and histopathological evaluation. DRS parameters correlated with clot RBC fraction (R=81, p<0.001) and could be used for the classification of clot type with sensitivity and specificity rates for the detection of RBC-rich clots of 0.722 and 0.846, respectively. Applied in an intravascular probe, DRS may provide intra-procedural information on clot composition to improve endovascular thrombectomy efficiency.
  •  
4.
  •  
5.
  • Skyrman, Simon, et al. (författare)
  • Preoperative antibiotic prophylaxis regimen in brain tumour surgery in Sweden: a quasi-experimental study.
  • 2020
  • Ingår i: Acta neurochirurgica. - : Springer Science and Business Media LLC. - 0942-0940 .- 0001-6268. ; 162, s. 2849-2856
  • Tidskriftsartikel (refereegranskat)abstract
    • There has been varied clinical practice concerning antibiotic prophylaxis in patients undergoing craniotomy. In Sweden, both Cloxacillin and Cefuroxime have frequently been used. We aimed to study the clinical effectiveness of these two regimens.A quasi-experimental design was used. The sample consisted of 580 adult (>18years) patients operated 2012-2015, of which 375 received Cloxacillin (pre-intervention group) and 205 received Cefuroxime (intervention group). Primary endpoint was the incidence of surgical site infection (SSI) 12months after surgery, while secondary endpoints were the need for reoperation due to SSI, the amount antibiotics used and the number of visits in the outpatient clinic related to SSI. A control group from another institution was reviewed to rule out clinical trial effects.When analysed by intention to treat, the pre-intervention group had a significant higher incidence of SSI, 13.3% (50/375) vs 5.4% (11/205) in the intervention group (p<0.01). A treatment per protocol analysis confirmed the result. The number of reoperations due to SSI were significantly reduced in the intervention group, 3.4% (7/205) vs 8.3% (31/375) (p=0.02), as was the total antibiotic use (p=0.03) and the number of visits in the outpatient clinic (p<0.01). In the control group, the reoperation rate as result of SSI was lower (p=0.02) prior to the opposite change from Cefuroxime to Cloxacillin, 1.8% (27/1529) vs 3.1% (43/1378).In Sweden, Cefuroxime as prophylaxis in brain tumour surgery by craniotomy seems to be superior to Cloxacillin.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy