SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slik Ferry) "

Sökning: WFRF:(Slik Ferry)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cooper, Declan L.M., et al. (författare)
  • Consistent patterns of common species across tropical tree communities
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7996, s. 728-734
  • Tidskriftsartikel (refereegranskat)abstract
    • Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.
  •  
2.
  • Muscarella, Robert, et al. (författare)
  • The global abundance of tree palms
  • 2020
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:9, s. 1495-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • AimPalms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.LocationTropical and subtropical moist forests.Time periodCurrent.Major taxa studiedPalms (Arecaceae).MethodsWe assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.ResultsOn average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work.ConclusionsTree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests.
  •  
3.
  • Richardson, James E., et al. (författare)
  • The influence of tectonics, sea-level changes and dispersal on migration and diversification of Isonandreae (Sapotaceae)
  • 2014
  • Ingår i: Botanical journal of the Linnean Society. - : Wiley-Blackwell. - 0024-4074 .- 1095-8339. ; 174:1, s. 130-140
  • Tidskriftsartikel (refereegranskat)abstract
    • Internal transcribed spacer (ITS) ribosomal DNA sequence data were generated for 80 of the c. 200 species of Isonandreae and were added to data from African and Neotropical representatives in subfamily Sapotoideae and outgroups in Sapotaceae. Bayesian dating and ancestral area reconstruction indicated that Isonandreae are derived from within an African grade. Multiple Australasian species or lineages are derived from Sundanian lineages in South-East Asia with stem ages originating from the late Oligocene. Sri Lankan and Indian lineages are also derived from Sundanian lineages. Our results are consistent with migration from Africa into Sundania followed by numerous over-water dispersal events across Wallace's Line into Australasia and migration from Sundania to the Indian subcontinent. Pleistocene speciation indicates that sea-level changes during that epoch could have been responsible for some species diversification in Sundania.
  •  
4.
  • Shi, Ling-Ling, et al. (författare)
  • Variation in forest soil fungal diversity along a latitudinal gradient
  • 2014
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 64:1, s. 305-315
  • Tidskriftsartikel (refereegranskat)abstract
    • In forest ecosystems, plant communities shape soil fungal communities through the provisioning of carbon. Although the variation in forest composition with latitude is well established, little is known about how soil fungal communities vary with latitude. We collected soil samples from 17 forests, along a latitudinal transect in western China. Forest types covered included boreal, temperate, subtropical and tropical forests. We used 454 pyrosequencing techniques to analyze the soil communities. These data were correlated with abiotic and biotic variables to determine which factors most strongly influenced fungal community composition. Our results indicated that temperature, latitude, and plant diversity most strongly influence soil fungal community composition. Fungal diversity patterns were unimodal, with temperate forests (mid latitude) exhibiting the greatest diversity. Furthermore, these diversity patterns indicate that fungal diversity was highest in the forest systems with the lowest tree diversity (temperate forests). Different forest systems were dominated by different fungal subgroups, ectomycorrhizal fungi dominated in boreal and temperate forests; endomycorrhizal fungi dominated in the tropical rainforests, and non-mycorrhizal fungi were best represented in subtropical forests. Our results suggest that soil fungal communities are strongly dependent on vegetation type, with fungal diversity displaying an inverse relationship to plant diversity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy