SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slobodnik J.) "

Sökning: WFRF:(Slobodnik J.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Altenburger, R., et al. (författare)
  • Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 512, s. 540-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring. (C) 2015 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  • Brack, W., et al. (författare)
  • Effect-based methods are key. The European Collaborative Project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4715 .- 2190-4707. ; 31
  • Tidskriftsartikel (refereegranskat)abstract
    • The present monitoring and assessment of the chemical status of water bodies fail to characterize the likelihood that complex mixtures of chemicals affect water quality. The European Collaborative Project SOLUTIONS suggests that this likelihood can be estimated with effect-based methods (EBMs) complemented by chemical screening and/or impact modeling. These methods should be used to identify the causes of impacted water quality and to develop programs of measures to improve water quality. Along this line of reasoning, effect-based methods are recommended for Water Framework Directive (WFD) monitoring to cover the major modes of action in the universe of environmentally relevant chemicals so as to evaluate improvements of water quality upon implementing the measures. To this end, a minimum battery of bioassays has been recommended including short-term toxicity to algae, Daphnia and fish embryos complemented with in vitro and short-term in vivo tests on mode-of-action specific effects as proxies for long-term toxicity. The likelihood of adverse impacts can be established with effect-based trigger values, which differentiate good from poor water quality in close alignment with Environmental Quality Standards for individual chemicals, while taking into account mixture toxicity. The use of EBMs is suggested in the WFD as one avenue to establish the likelihood of adverse effects due to chemical pollution in European water systems. The present paper has been written as one component of a series of policy briefs to support decisions on water quality monitoring and management under the WFD.
  •  
4.
  • Brack, W., et al. (författare)
  • Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment
  • 2019
  • Ingår i: Environmental Sciences Europe. - : Springer Science and Business Media LLC. - 2190-4707 .- 2190-4715. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To meet the United Nations (UN) sustainable development goals and the European Union (EU) strategy for a non-toxic environment, water resources and ecosystems management require cost-efficient solutions for prevailing complex contamination and multiple stressor exposures. For the protection of water resources under global change conditions, specific research needs for prediction, monitoring, assessment and abatement of multiple stressors emerge with respect to maintaining human needs, biodiversity, and ecosystem services. Collaborative European research seems an ideal instrument to mobilize the required transdisciplinary scientific support and tackle the large-scale dimension and develop options required for implementation of European policies. Calls for research on minimizing society's chemical footprints in the water-food-energy-security nexus are required. European research should be complemented with targeted national scientific funding to address specific transformation pathways and support the evaluation, demonstration and implementation of novel approaches on regional scales. The foreseeable pressure developments due to demographic, economic and climate changes require solution-oriented thinking, focusing on the assessment of sustainable abatement options and transformation pathways rather than on status evaluation. Stakeholder involvement is a key success factor in collaborative projects as it allows capturing added value, to address other levels of complexity, and find smarter solutions by synthesizing scientific evidence, integrating governance issues, and addressing transition pathways. This increases the chances of closing the value chain by implementing novel solutions. For the water quality topic, the interacting European collaborative projects SOLUTIONS, MARS and GLOBAQUA and the NORMAN network provide best practice examples for successful applied collaborative research including multi-stakeholder involvement. They provided innovative conceptual, modelling and instrumental options for future monitoring and management of chemical mixtures and multiple stressors in European water resources. Advancement of EU water framework directive-related policies has therefore become an option. Bt Aachen Biol, Aachen, Germany.
  •  
5.
  • Martens, Marvin, et al. (författare)
  • ELIXIR and Toxicology : a community in development
  • 2021
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 10, s. 1129-1129
  • Tidskriftsartikel (refereegranskat)abstract
    • Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.  
  •  
6.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (12)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (13)
Författare/redaktör
Slobodnik, Jaroslav (7)
Slobodnik, J. (6)
Backhaus, Thomas, 19 ... (5)
Altenburger, R. (5)
Brack, W. (5)
Thomaidis, Nikolaos ... (5)
visa fler...
Munthe, John (4)
Hollert, H. (4)
van Gils, J. (4)
Alygizakis, Nikiforo ... (4)
Müller, C. (3)
Faust, M. (3)
Escher, B. I. (3)
Hilscherova, K. (3)
Hollender, J. (3)
Kortenkamp, A. (3)
Teodorovic, I. (3)
Hollender, Juliane (3)
Krauss, Martin (3)
Glowacka, Natalia (3)
Schulz, Wolfgang (2)
Barceló, D. (2)
Ginebreda, A. (2)
Cincinelli, Alessand ... (2)
Neumann, Steffen (2)
Ait-Aissa, S. (2)
Seiler, T. B. (2)
de Alda, M. L. (2)
Focks, A. (2)
Neumann, S. (2)
Segner, H. (2)
Tindall, A. J. (2)
Tollefsen, K. E. (2)
Zhang, X. W. (2)
Brack, Werner (2)
Ng, Kelsey (2)
Čirka, Ľuboš (2)
Gkotsis, Georgios (2)
Nika, Maria-Christin ... (2)
Bizani, Erasmia (2)
Nikolopoulou, Varvar ... (2)
Claßen, Daniela (2)
Danielsson, Sara (2)
Dekker, Rene W.R.J. (2)
Duke, Guy (2)
Jansman, Hugh A.H. (2)
Koschorreck, Jan (2)
Krone, Oliver (2)
Martellini, Tania (2)
Movalli, Paola (2)
visa färre...
Lärosäte
Göteborgs universitet (5)
Stockholms universitet (3)
IVL Svenska Miljöinstitutet (3)
Umeå universitet (2)
Uppsala universitet (2)
Naturhistoriska riksmuseet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Luleå tekniska universitet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Medicin och hälsovetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy