SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slootweg M C) "

Sökning: WFRF:(Slootweg M C)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Slootweg, M C, et al. (författare)
  • Growth hormone binds to a single high affinity receptor site on mouse osteoblasts: modulation by retinoic acid and cell differentiation.
  • 1996
  • Ingår i: The Journal of endocrinology. - 0022-0795. ; 150:3, s. 465-72
  • Tidskriftsartikel (refereegranskat)abstract
    • Growth hormone (GH) exerts direct differentiative and proliferative effects on osteoblasts. We studied 125I-labeled human (h) GH binding to primary mouse osteoblasts derived from collagenase-treated 18-day fetal mouse calvaria. Scatchard analysis of the data revealed a single class of high affinity GH receptors (apparent Ka = 5.74 x 10(9) M-1) with 2200 sites per cell. Affinity crosslinking and SDS-PAGE electrophoresis showed two bands with apparent molecular masses of 120 and 70 kDa. Mouse osteoblasts express GH receptor mRNA with gene transcripts of 4.2 and 1.2 kb, at levels which reach approximately 1/6 of those in mouse liver and 1/3 of those in mouse muscle. Two populations of undifferentiated and diffentiated osteoblasts, obtained by sequential collagenase digestion of mouse calvaria, were used to study the relationship between osteoblastic phenotype and GH receptor expression. Although the affinity of the receptors in undifferentiated and differentiated cells was the same, the capacity was significantly higher (1.45 +/- 1.0% vs 2.39 +/- 0.9%, P = 0.03) in differentiated cells. This stresses the specific importance of the osteoblast as a target cell for GH. The differentiating potential of the vitamin A derivative retinoic acid was subsequently used experimentally to induce differentiation in the cells. Retinoic acid increased 125I-hGH binding to preosteoblasts (153%, P = 0.02). Together, these data demonstrate the presence of a high affinity GH receptor in mouse osteoblasts which is related to differentiation.
  •  
2.
  • Slootweg, M C, et al. (författare)
  • Insulin-like growth factor binding proteins-2 and -3 stimulate growth hormone receptor binding and mitogenesis in rat osteosarcoma cells.
  • 1995
  • Ingår i: Endocrinology. - 0013-7227. ; 136:10, s. 4210-7
  • Tidskriftsartikel (refereegranskat)abstract
    • GH exerts its biological actions on osteoblasts through a specific high affinity receptor expressed on these cells. GH receptor binding is positively modulated by a number of factors, including retinoic acid and dexamethasone, whereas fetal calf serum strongly decreases the binding. To identify responsible factors in serum, components of serum, the insulin-like growth factors (IGFs)-I and -II, and IGF binding proteins (IGFBPs)-2 and -3 were tested for a possible negative modulatory role. IGF-I and -II decreased [125I]hGH binding at an optimal concentration of 30 ng/ml for IGF-I and 100 ng/ml IGF-II, reducing the binding to 51% and 55%, respectively, of control values. A stimulation of [125I]hGH binding was observed with IGFBP-2 as well as IGFBP-3, inducing an increase to 148% and 151% of control binding at an optimal concentration of 3000 ng/ml for both peptides. The effects of all peptides were dependent on the incubation time, being significantly increased after 8 h of incubation and reaching the full effect thereafter. The effects were declined at 24 h compared with 16 h for IGFBP-2 and -3 but not for IGF-I and -II. Coincubation of the cells with IGF-I and -II and IGFBP-2 and -3 neutralized the effects of the factors alone. In conclusion, these results show that IGF-I and -II on the one hand and IGFBP-2 and -3 on the other hand exert opposite actions on [125I]hGH binding, IGFBP-2 and -3 exerting probably an IGF-independent effect. Further, IGF-I and -II decreased GH receptor messenger RNA (mRNA) levels, as quantified by a solution hybridization ribonuclease protection assay, from 8.65 +/- 1.78 attomoles (amol)/microgram DNA (control) to 2.4 +/- 0.68 and 2.16 +/- 0.92 amol/microgram DNA, respectively. IGFBP-2 increased GH receptor mRNA levels from 5.26 +/- 1.17 (control) to 13.19 +/- 3.48. Incubation with IGFBP-3 did not result in stimulation of GH receptor mRNA levels (8.59 +/- 2.91 amol/microgram DNA). This shows that the mechanism of regulation of the GH receptor is, except for IGFBP-3, at least in part on the mRNA level. Lastly, IGFBP-2 and IGFBP-3 are mitogenic for UMR-106.01 rat osteosarcoma cells, inducing an increase in cell number to 125% and 142% of control cell counts after 48 h of incubation with 1000 ng/ml IGFBP-2 and -3, whereas IGF-I, IGF-II and Long R3 IGF-I did not stimulate proliferation. IGFBP-2 and -3 potentiate hGH induced mitogenesis at low hGH concentrations of both factors, whereas at higher concentrations no such effect is observed.(ABSTRACT TRUNCATED AT 400 WORDS)
  •  
3.
  • Slootweg, M C, et al. (författare)
  • Estrogen enhances growth hormone receptor expression and growth hormone action in rat osteosarcoma cells and human osteoblast-like cells.
  • 1997
  • Ingår i: The Journal of endocrinology. - 0022-0795. ; 155:1, s. 159-64
  • Tidskriftsartikel (refereegranskat)abstract
    • Postmenopausal bone loss is primarily due to estrogen deficiency. Recent clinical observation demonstrate that GH increases bone mass in GH deficient patients. The present study investigates whether estrogen regulates GH action and GH receptor expression in osteoblasts. 17 beta-estradiol or GH added to the culture medium as single substances did not influence rat osteosarcoma cell proliferation nor human osteoblast-like (hOB) cell proliferation. However, together they synergistically induced osteoblast proliferation (rat osteosarcoma cells 160.1 +/- 15.5% of control cells; human osteoblast-like cells 159.6 +/- 5.1% of control cells). 17 beta-estradiol stimulated 125I-GH binding and GH receptor (GHR) mRNA levels in rat osteosarcoma cells. The stimulatory effect of estradiol was time dependent, reaching a peak after 8 h of incubation with 17 beta-estradiol (binding 216.9 +/- 27.8% and mRNA 374.6 +/- 30.8% of control). The finding that estradiol stimulated 125I-GH binding was confirmed in human osteoblast-like cells. In these cells, 17 beta-estradiol (10(-12) M) increased 125I-GH binding to 203.8 +/- 3.6% of control levels. We conclude that estrogen stimulates GH activity as well as GH binding and GHR mRNA levels in osteoblasts. These findings indicate that estrogen potentiates the effect of GH at the receptor level.
  •  
4.
  • Slootweg, M C, et al. (författare)
  • Growth hormone receptor activity is stimulated by insulin-like growth factor binding protein 5 in rat osteosarcoma cells.
  • 1996
  • Ingår i: Growth regulation. - 0956-523X. ; 6:4, s. 238-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoblast-like UMR-106.01 rat osteosarcoma cells express high affinity growth hormone (GH) receptors (GHRs). Because osteoblasts secrete insulin-like growth factor binding protein-5 (IGFBP-5), we evaluated whether it also modulates GH binding and GHR expression in UMR cells. Human recombinant intact IGFBP-5 stimulated 125I-hGH binding in a dose-dependent manner (dose range 300-3000 ng/ml), inducing an increase to 193.6 +/- 2.1% of control binding at 3000 ng/ml (P < 0.001). Carboxy-truncated IGFBP-5 also stimulated GH binding but with less potency (125 +/- 2.7% of control at 3000 ng/ml, P < 0.01). GHRs identified by chemical crosslinking of 125I-hGH to cell monolayers increased after treatment with IGFBP-5 and decreased in response to insulin-like growth factor-I (IGF-I). GHR mRNA levels, as quantitated by a solution hybridization RNAse protection assay, increased up to 3 to 7-fold in a time-dependent manner by intact IGFBP-5 but not by carboxy-truncated IGFBP-5. An antiserum to IGFBP-5 reduced basal GH binding to 56.7 +/- 4.3% of control value at a concentration of 0.5% (P < 0.001), showing that IGFBP-5 produced by the cells is a strong regulator of GH binding. IGFBP-5 antiserum also decreased GH binding to 85.9 +/- 0.9% of IGFBP-5 stimulated value (P < 0.001), showing the specificity of IGFBP-5 stimulation. To determine whether the GHR upregulation was physiologically significant, cell proliferation was evaluated after coincubation of IGFBP-5 with low, non-stimulatory concentrations of GH. IGFBP-5 (1000 ng/ml) induced cell proliferation to 116.2 +/- 3.2% of control levels, and coincubation with hGH at 10 ng/ml induced an increase to 133.3 +/- 0.1% of control levels. We conclude that exogenous and endogenous IGFBP-5 upregulate GHR mRNA levels and GH binding and this interaction potentiates GH-stimulated mitogenesis in osteoblastic cells.
  •  
5.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Growth hormone and bone.
  • 1998
  • Ingår i: Endocrine reviews. - 0163-769X. ; 19:1, s. 55-79
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that GH is important in the regulation of longitudinal bone growth. Its role in the regulation of bone metabolism in man has not been understood until recently. Several in vivo and in vitro studies have demonstrated that GH is important in the regulation of both bone formation and bone resorption. In Figure 9 a simplified model for the cellular effects of GH in the regulation of bone remodeling is presented (Fig. 9). GH increases bone formation in two ways: via a direct interaction with GHRs on osteoblasts and via an induction of endocrine and autocrine/paracrine IGF-I. It is difficult to say how much of the GH effect is mediated by IGFs and how much is IGF-independent. GH treatment also results in increased bone resorption. It is still unknown whether osteoclasts express functional GHRs, but recent in vitro studies indicate that GH regulates osteoclast formation in bone marrow cultures. Possible modulations of the GH/IGF axis by glucocorticoids and estrogens are also included in Fig. 9. GH deficiency results in a decreased bone mass in both man and experimental animals. Long-term treatment (> 18 months) of GHD patients with GH results in an increased bone mass. GH treatment also increases bone mass and the total mechanical strength of bones in rats with a normal GH secretion. Recent clinical studies demonstrate that GH treatment of patients with normal GH secretion increases biochemical markers for both bone formation and bone resorption. Because of the short duration of GH treatment in man with normal GH secretion, the effect on bone mass is still inconclusive. Interestingly, GH treatment to GHD adults initially results in increased bone resorption with an increased number of bone-remodeling units and more newly produced unmineralized bone, resulting in an apparent low or unchanged bone mass. However, GH treatment for more than 18 months gives increased bone formation and bone mineralization of newly produced bone and a concomitant increase in bone mass as determined with DEXA. Thus, the action of GH on bone metabolism in GHD adults is 2-fold: it stimulates both bone resorption and bone formation. We therefore propose "the biphasic model" of GH action in bone remodeling (Fig. 10). According to this model, GH initially increases bone resorption with a concomitant bone loss that is followed by a phase of increased bone formation. After the moment when bone formation is stimulated more than bone resorption (transition point), bone mass is increased. However, a net gain of bone mass caused by GH may take some time as the initial decrease in bone mass must first be replaced (Fig. 10). When all clinical studies of GH treatment of GHD adults are taken into account, it appears that the "transition point" occurs after approximately 6 months and that a net increase of bone mass will be seen after 12-18 months of GH treatment. It should be emphasized that the biphasic model of GH action in bone remodeling is based on findings in GHD adults. It remains to be clarified whether or not it is valid for subjects with normal GH secretion. A treatment intended to increase the effects of GH/IGF-I axis on bone metabolism might include: 1) GH, 2) IGF, 3) other hormones/factors increasing the local IGF-I production in bone, and 4) GH-releasing factors. Other hormones/growth factors increasing local IGF may be important but are not discussed in this article. IGF-I has been shown to increase bone mass in animal models and biochemical markers in humans. However, no effect on bone mass has yet been presented in humans. Because the financial cost for GH treatment is high it has been suggested that GH-releasing factors might be used to stimulate the GH/IGF-I axis. The advantage of GH-releasing factors over GH is that some of them can be administered orally and that they may induce a more physiological GH secretion. (ABSTRACT TRUNCATED)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy