SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Slotte Tanja Associate Professor) "

Sökning: WFRF:(Slotte Tanja Associate Professor)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bachmann, Jörg Alexander, 1989- (författare)
  • Evolutionary consequences of dominance at the Brassicaceae self-incompatibility locus
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Self-incompatibility (SI) is a genetic mechanism that allows plants to enforce outcrossing by rejecting self-pollen and pollen from close relatives. In the Brassicaceae, SI is sporophytic and controlled by the self-incompatibility locus (S-locus). The S-locus harbors two tightly linked genes SRK and SCR, which encode the female and male SI specificity determinants, respectively. S-locus heterozygotes often only express the S-specificity of the more dominant allele, and at the pollen level such dominance relationships are mediated by small RNAs (sRNAs). The S-locus is thus an example of a locus under strong balancing selection, where dominance modifiers have evolved.In this thesis, I investigate the consequences of S-locus dominance for plant mating system evolution and allopolyploid speciation. I further investigate evolutionary conservation and sequence-level effects of dominance relationships among S-alleles. For this purpose, I used the crucifer genus Capsella as a model system.First, I demonstrated that targeted long-read sequencing results in structurally accurate assemblies of full-length S-haplotype sequences, and that indel errors in such assemblies can be corrected using short reads. Second, I investigated the genetic basis of loss of SI, the first step in the evolution of self-fertilisation, in the self-compatible (SC) Capsella orientalis. I found that loss of SI was dominant and mapped to the S-locus, where C. orientalis harbored a fixed coding frameshift deletion in SCR that is likely to lead to loss of male specificity. I further identified a sRNA-based dominance modifier that is associated with dominant suppression of recessive SCR alleles. Taken together, these results suggest that loss of SI in C. orientalis involved a dominant S-haplotype, suggesting that dominant haplotypes may be favored under conditions that select for loss of SI. Third, I show that a dominant S-haplotype may also have contributed to the shift to SC in the widespread allotetraploid Capsella bursa-pastoris. Fourth, I showed that dominance relationships at the S-locus are largely conserved between the SI outcrossing species C. grandiflora and Arabidopsis halleri which diverged ~8 Mya. I also found that dominant S-haplotypes accumulate more transposable elements than recessive S-haplotypes, in line with expected sequence-level consequences of S-locus dominance. In sum, this thesis provides new insights into the broad conservation of dominance hierarchies at the Brassicaceae S-locus, and the role of dominant S-alleles in allopolyploid speciation and plant mating system shifts.
  •  
2.
  • Horvath, Robert, 1988- (författare)
  • Population genomic analyses of regulatory variation and selection in Brassicaceae species
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The impact of selection on regulatory variation and the contribution of regulatory changes to phenotypic variation has long been debated in evolutionary genetics. Because cis-regulatory elements such as promoters and enhancers can be difficult to identify, it has been more challenging to quantify the impact of selection on variation in cis-regulatory regions than in protein-coding regions. In this thesis, I use genomic tools to investigate gene expression variation and selection in Brassicaceae species. First, I investigated the genomic impact of selection on putative cis-regulatory regions in the genome of the crucifer species Capsella grandiflora (Brassicaceae) (Paper I). I used an assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) to empirically identify putative cis-regulatory regions as those located in accessible chromatin regions (ACRs) in the genome of the crucifer species Capsella grandiflora. Based on whole-genome resequencing data from a natural population, I then showed that ACRs are under stronger purifying selection than other intergenic regions and that they are depleted for transposable element (TE) insertions and enriched for expression quantitative trait loci (eQTL), as would be expected if ACRs are enriched for functional elements affecting gene expression. Second, I explored how the location and silencing of transposable elements (TEs) affects selection against TEs (Paper II). Specifically, I tested a trade-off model on epigenetic TE silencing, according to which the positive effects of TE silencing on preventing TE movement conflict with negative effects of TE silencing on nearby gene expression. I found that TE silencing through the RNA-directed DNA methylation (RdDM) pathway affects selection against TEs close to genes in C. grandiflora, which is consistent with the trade-off model. Third, I used Arabidopsis thaliana single-cell expression data to investigate the relationship between gene body methylation (gbM) and transcriptional regulation (Paper III). I found that there was an indirect correlation between gbM and gene expression noise as well as a direct correlation between gbM and gene expression consistency and potentially intron retention in Arabidopsis thaliana. Fourth, I investigated the impact of demographic history on genomic signatures of selection at linked sites (linked selection) (Paper IV). This study revealed that neutral genetic diversity in C. grandiflora with a stable effective population size is influenced by linked selection whereas in Arabidopsis lyrata, which underwent a recent and strong bottleneck, neutral diversity is mainly affected by population size change. In summary, this thesis offers new insights into determinants of gene expression variation, selection on genomic features linked to gene expression alteration, as well as on the effect of demographic history on linked selection patterns in Brassicaceae.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy