SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smaradottir H) "

Sökning: WFRF:(Smaradottir H)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnason, T., et al. (författare)
  • Long-term rearing of Arctic charr Salvelinus alpinus under different salinity regimes at constant temperature
  • 2014
  • Ingår i: Journal of Fish Biology. - : Wiley. - 0022-1112. ; 85:4, s. 1145-1162
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic charr Salvelinus alpinus of the Holar strain (mean+/- s. e. body mass= 152.1+/-3.1g) were reared at four different salinity regimes at a constant temperature of 7.4 degrees C. Two groups were given a three-month acclimation in salinity 18 before the salinity was increased to either 25 or 29 (groups called A25 and A29), and two groups were reared in salinities 25 or 29 over the full experimental period of 409 days (groups called F25 and F29). In the first 3months, the A25 and A29 groups had the highest growth rates. By October 2011, there were no significant differences (two-way nested ANOVA, P> 0.05) in the mean body masses among A25, F25 and F29 (c. 1450 g), whereas A29 had a lower mean mass (1282 g). The growth in the last period from October 2011 to January 2012 was reduced by sexual maturation in the highest salinity regimes (A29 and F29), whereas fish in groups A25 and F25 showed high growth throughout the study. Males in all salinity groups had higher growth rates than females for the most part of the study, but the divergence between the sexes was most pronounced in the highest salinity regimes. All salinity groups showed distinct changes in Na+, K+-ATPase activity, with high activity in spring and summer, and lower activity in the autumn. Plasma sodium (Na+) levels were stable indicating that none of the experimental groups had problems in maintaining hydromineral balance during the study. While plasma leptin levels were not affected by salinity regimes, it was noted that these levels were 13-30% higher in fish with empty guts compared with those having food in their gut at the time of sampling. This suggests a link between leptin levels and food intake, indicating that this hormone may play a role in food intake and energy allocation in fishes.
  •  
2.
  • Gunnarsson, S., et al. (författare)
  • Effects of short-day treatment on long-term growth performance and maturation of farmed Arctic charr Salvelinus alpinus reared in brackish water
  • 2014
  • Ingår i: Journal of Fish Biology. - : Wiley. - 0022-1112. ; 85:4, s. 1211-1226
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of a 6 week short-day photoperiod followed by continuous light, applied during the juvenile phase of Arctic charr Salvelinus alpinus in fresh water on smoltification and on the long-term growth andmaturity following transfer to brackish water (BW) (constant salinity of either 17 and 27 or increasing salinity in steps from 17 to 27) were investigated. Prior to salinity transfer, the juveniles were either reared at continuous light (C group) or reared for 6 weeks on a short day (8L: 16D, S group) followed by continuous light (24L: 0D). Increased salinity had negative effect on growth, with female fish reared at 17 salinity weighing 19 and 27% more than the salinity-step group (17-27) and the 27 salinity group, respectively. The stepwise acclimation to salinity had limited advantage in terms of growth rate. Short photoperiod for 6 weeks (November to January) followed by continuous light improved growth, but not seawater (SW) tolerance. Gill Na+, K+-ATPase activity and plasma Na+ levels changed with time, indicating some variation in osmoregulatory capacity during the experimental period. Overall, there appear to be interactive effects on maturation from applying short-day photoperiod followed by rearing at higher salinities. Plasma leptin varied with time and may be linked to stress caused by the observed variations in osmoregulatory ability. It is concluded that changes in growth rates observed in this study are mainly related to rearing salinity with higher growth rates at lower salinities. Short-day photoperiod has some growth-inducing effects but did not improve SW tolerance. Farmers of S. alpinus using BW for land-based rearing should keep salinity at moderate and stable levels according to these results to obtain best growth.
  •  
3.
  •  
4.
  • Einarsdottir, Ingibjörg, 1951, et al. (författare)
  • Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut
  • 2006
  • Ingår i: Anatomy and Embryology. - : Springer Science and Business Media LLC. - 0340-2061 .- 1432-0568. ; 211:1, s. 47-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D degrees=accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D degrees (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T-3) and thyroxine (T-4) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T-3 and T-4 occurs around the start of metamorphosis and the T-3 content further increases at the metamorphic climax. Overall, the T-3 content is lower than T-4. The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D degrees (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D degrees (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D degrees), but coincident with a phase in which follicle number and activity increase (260 D degrees). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D degrees, coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.
  •  
5.
  • Power, Deborah M, et al. (författare)
  • The molecular and endocrine basis of flatfish metamorphosis
  • 2008
  • Ingår i: Reviews in Fisheries Science. - : Informa UK Limited. - 1064-1262 .- 1547-6553. ; 16:S1, s. 93-109
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant component of aquaculture is the production of good quality larvae, and, in the case of flatfish, this is tied up with the change from a symmetric larva to an asymmetric juvenile. Despite the pioneering work carried out on the metamorphosis of the Japanese flounder (Paralichthys olivaceus) and summer flounder (Paralichthys dentatus), the underlying molecular basis of flatfish metamorphosis is still relatively poorly characterized. It is a thyroid hormone (TH) driven process, and the role of other hormones in the regulation of the process along with the interplay of abiotic factors are still relatively poorly characterized as is the extent of tissue and organ remodeling, which underlie the profound structural and functional modifications that accompany the larval/juvenile transition. The isolation of genes for hormones, receptors, binding proteins, and other accessory factors has provided powerful tools with which to pursue this question. The application of molecular methodologies such as candidate gene approaches and microarray analysis coupled to functional genomics has started to contribute to understanding the complexity of tissue and organ modifications that accompany flatfish metamorphosis. A better understanding of the biology of normal metamorphosis is essential to identify factors contributing to abnormal metamorphosis.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy