SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Smolentsev Grigory) "

Sökning: WFRF:(Smolentsev Grigory)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smolentsev, Nikolay, et al. (författare)
  • Local atomic structure around Mn ions in GaN:Mn thin films: Quantitative XANES analysis
  • 2011
  • Ingår i: Physica B: Condensed Matter. - : Elsevier BV. - 0921-4526. ; 406:14, s. 2843-2846
  • Tidskriftsartikel (refereegranskat)abstract
    • GaN:Mn dilute magnetic semiconductors with zinc-blende type of lattice and room temperature ferromagnetism were investigated by the X-ray absorption near edge structure (XANES) with a high accuracy approach of the multidimensional interpolation, which makes it possible to determine the nanoscale local atomic structure around Mn impurities. It is found that Mn atoms are substantially incorporated into the GaN lattice and Jahn-Teller distortion around Mn atom is observed. Our results show that symmetry changes around Mn atom influence on XANES spectrum significantly. Furthermore, the possible impact of local distortions on the magnetic properties is discussed. (C) 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Alperovich, Igor, et al. (författare)
  • Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 133:39, s. 15786-15794
  • Tidskriftsartikel (refereegranskat)abstract
    • L-2,L-3-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[(Ru2O)-O-III(H2O)(2)(bpy)(4)](4+) water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH3)(6)](3+) model complex show considerably different splitting of the Ru L-2,L-3 absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L-2,L-3-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L-2,L-3-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH3)(6)](3+) model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.
  •  
3.
  • Cannelli, Oliviero, et al. (författare)
  • Atomic-Level Description of Thermal Fluctuations in Inorganic Lead Halide Perovskites
  • 2022
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 13:15, s. 3382-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures.
  •  
4.
  •  
5.
  • Canton, Sophie, et al. (författare)
  • Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts
  • 2013
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 4:11, s. 1972-1976
  • Tidskriftsartikel (refereegranskat)abstract
    • Building a detailed understanding of the structure function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 +/- 0.03 angstrom. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices.
  •  
6.
  • Huijser, Annemarie, et al. (författare)
  • Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy
  • 2018
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 122:31, s. 6396-6406
  • Tidskriftsartikel (refereegranskat)abstract
    • Photoinduced electronic and structural changes of a hydrogen-generating supramolecular RuPt photocatalyst are studied by a combination of time-resolved photoluminescence, optical transient absorption, and X-ray absorption spectroscopy. This work uses the element specificity of X-ray techniques to focus on the interplay between the photophysical and -chemical processes and the associated time scales at the catalytic Pt moiety. We observe very fast (<30 ps) photoreduction of the Pt catalytic site, followed by an ∼600 ps step into a strongly oxidized Pt center. The latter process is likely induced by oxidative addition of reactive iodine species. The oxidized Pt species is long-lived and fully recovers to the original ground state complex on a >10 μs time scale. However, the photosensitizing Ru moiety is fully restored on a much shorter ∼300 ns time scale. This reaction scheme implies that we may withdraw two electrons from a catalyst that is activated by a single photon.
  •  
7.
  • Jay, Raphael, et al. (författare)
  • Tracking C–H activation with orbital resolution
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6648, s. 955-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex. Changes in oxidation state as well as valence-orbital energies and character emerge in the data on a femtosecond to nanosecond timescale. The x-ray spectroscopic signatures reflect how alkane-to-metal donation determines metal-alkane complex stability and how metal-to-alkane back-donation facilitates C-H bond cleavage by oxidative addition. The ability to dissect charge-transfer interactions on an orbital level provides opportunities for manipulating C-H reactivity at transition metals.
  •  
8.
  • Lockard, Jenny V, et al. (författare)
  • Influence of Ligand Substitution on Excited State Structural Dynamics in Cu(I) Bisphenanthroline Complexes
  • 2010
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 114:45, s. 14521-14527
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu(I) diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu(I)(detp)(2)](+) are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu(I)(phen)(2)](+), and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu(I)(dmp)(2)](+), model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu(I)(detp)(2)](+) and [Cu(I)(phen)(2)](+) excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu(I)(detp)(2)](+), [Cu(I)(phen)(2)](+), and [Cu(I)(dmp)(2)](+) are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.
  •  
9.
  • Lockard, Jenny V, et al. (författare)
  • Triplet Excited State Distortions in a Pyrazolate Bridged Platinum Dimer Measured by X-ray Transient Absorption Spectroscopy.
  • 2010
  • Ingår i: Journal of physical chemistry. A. - : American Chemical Society (ACS). - 1520-5215 .- 1089-5639. ; 114:48, s. 12780-12787
  • Tidskriftsartikel (refereegranskat)abstract
    • The excited-state structure of a dinuclear platinum(II) complex with tert-butyl substituted pyrazolate bridging units, [Pt(ppy)(μ-(t)Bu(2)pz)](2) (ppy = 2-phenylpyridine; (t)Bu(2)pz = 3,5-di-tert-butylpyrazolate) is studied by X-ray transient absorption (XTA) spectroscopy to reveal the transient electronic and nuclear geometry. DFT calculations predict that the lowest energy triplet excited state, assigned to a metal-metal-to-ligand charge transfer (MMLCT) transition, has a contraction in the Pt-Pt distance. The Pt-Pt bond length and other structural parameters extracted from fitting the experimental XTA difference spectra from full multiple scattering (FMS) and multidimensional interpolation calculations indicates a metal-metal distance decrease by approximately 0.2 Å in the triplet excited state. The advantages and challenges of this approach in resolving dynamic transient structures of nonbonding or weak-bonding dinuclear metal complexes in solution are discussed.
  •  
10.
  • Pfeffer, M. G., et al. (författare)
  • Palladium versus Platinum: The Metal in the Catalytic Center of a Molecular Photocatalyst Determines the Mechanism of the Hydrogen Production with Visible Light
  • 2015
  • Ingår i: Angewandte Chemie-International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 54:17, s. 5044-5048
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop highly efficient molecular photocatalysts for visible light-driven hydrogen production, a thorough understanding of the photophysical and chemical processes in the photocatalyst is of vital importance. In this context, in situ X-ray absorption spectroscopic (XAS) investigations show that the nature of the catalytically active metal center in a (N boolean AND N)MCl2 (M=Pd or Pt) coordination sphere has a significant impact on the mechanism of the hydrogen formation. Pd as the catalytic center showed a substantially altered chemical environment and a formation of metal colloids during catalysis, whereas no changes of the coordination sphere were observed for Pt as catalytic center. The high stability of the Pt center was confirmed by chloride addition and mercury poisoning experiments. Thus, for Pt a fundamentally different catalytic mechanism without the involvement of colloids is confirmed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy