SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sobol Maria) "

Sökning: WFRF:(Sobol Maria)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Fatima, Ambrin, et al. (författare)
  • Generation of a human Neurochondrin deficient iPSC line KICRi002-A-3 using CRISPR/Cas9
  • 2020
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061 .- 1876-7753. ; 44
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The role of Neurochondrin (NCDN) in humans is not well understood. Mice with a conditional Ncdn knock-out show epileptic seizures, depressive-like behaviours and impaired spatial learning. Using CRISPR/Cas9, we generated a Neurochondrin deficient human iPSC line KICRi002-A-3 carrying a homozygous 752 bp deletion / 2 bp insertion in the NCDN gene. The iPSC line maintained a normal 46,XY karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and Neurochondrin expression was not detectable. The iPSC line offers a valuable resource to study the role of Neurochondrin during human neurogenesis.
  •  
7.
  • Fatima, Ambrin, et al. (författare)
  • Incontinentia pigmenti : Generation of an IKBKG deficient human iPSC line (KICRi002-A-1) on a 46,XY background using CRISPR/Cas9
  • 2020
  • Ingår i: Stem Cell Research. - : Elsevier BV. - 1873-5061 .- 1876-7753. ; 44
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Incontinentia pigmenti (IP) is an X-linked dominant neuroectodermal dysplasia caused by loss-of-function mutations in the IKBKG gene. Using CRISPR/Cas9 technology, we generated an IKBKG knock-out iPSC line (KICRi002-A-1) on a 46,XY background. The iPSC line showed a normal karyotype, expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. Off-target editing was excluded and no IKBKG mRNA expression could be detected. Our line offers a useful resource to elucidate mechanisms caused by IKBKG deficiency that leads to disrupted male fetal development and for drug screening to improve treatment of female patients with IP.
  •  
8.
  • Fröjmark, Anne-Sophie, et al. (författare)
  • Mutations in frizzled 6 cause isolated autosomal-recessive nail dysplasia
  • 2011
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 88:6, s. 852-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Inherited and isolated nail malformations are rare and heterogeneous conditions. We identified two consanguineous pedigrees in which some family members were affected by isolated nail dysplasia that suggested an autosomal-recessive inheritance pattern and was characterized by claw-shaped nails, onychauxis, and onycholysis. Genome-wide SNP array analysis of affected individuals from both families showed an overlapping and homozygous region of 800 kb on the long arm of chromosome 8. The candidate region spans eight genes, and DNA sequence analysis revealed homozygous nonsense and missense mutations in FZD(6), the gene encoding Frizzled 6. FZD(6) belongs to a family of highly conserved membrane-bound WNT receptors involved in developmental processes and differentiation through several signaling pathways. We expressed the FZD(6) missense mutation and observed a quantitative shift in subcellular distribution from the plasma membrane to the lysosomes, where the receptor is inaccessible for signaling and presumably degraded. Analysis of human fibroblasts homozygous for the nonsense mutation showed an aberrant response to both WNT-3A and WNT-5A stimulation; this response was consistent with an effect on both canonical and noncanonical WNT-FZD signaling. A detailed analysis of the Fzd(6)(-/-) mice, previously shown to have an altered hair pattern, showed malformed claws predominantly of the hind limbs. Furthermore, a transient Fdz6 mRNA expression was observed in the epidermis of the digital tips at embryonic day 16.5 during early claw morphogenesis. Thus, our combined results show that FZD6 mutations can result in severe defects in nail and claw formation through reduced or abolished membranous FZD(6) levels and several nonfunctional WNT-FZD pathways.
  •  
9.
  • Klar, Joakim, et al. (författare)
  • Welander Distal Myopathy Caused by an Ancient Founder Mutation in TIA1 Associated with Perturbed Splicing.
  • 2013
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 34:4, s. 572-577
  • Tidskriftsartikel (refereegranskat)abstract
    • Welander distal myopathy (WDM) is an adult onset autosomal dominant disorder characterized by distal limb weakness which progresses slowly from the fifth decade. All WDM patients are of Swedish or Finnish descent and share a rare chromosome 2p13 haplotype. We restricted the WDM associated haplotype followed by whole exome sequencing. Within the conserved haplotype we identified a single heterozygous mutation c.1150G>A (p.E384K) in TIA1 in all WDM patients investigated (n = 43). The TIA1 protein regulates splicing and translation through direct interaction with mRNA and the p.E384K mutation is located in the C-terminal Q-rich domain that interacts with the U1-C splicing factor. TIA1 has been shown to prevent skipping of SMN2 exon 7 and we show that WDM patients have increased levels of spliced SMN2 in skeletal muscle cells when compared to controls. Immunostaining of WDM muscle biopsies showed accumulation of TIA1 and stress granulae proteins adjacent to intracellular inclusions, a typical finding in WDM. The combined findings strongly suggest that the TIA1 mutation causes perturbed RNA splicing and cellular stress resulting in WDM. The selection against the mutation is likely to be negligible and the age of the TIA1 founder mutation was calculated to approximately 1050 years, which coincides with the epoch of early seafaring across the Baltic Sea.
  •  
10.
  • Laan, Loora, et al. (författare)
  • DNA methylation changes in Down syndrome derived neural iPSCs uncover co-dysregulation of ZNF and HOX3 families of transcription factors
  • 2020
  • Ingår i: Clinical Epigenetics. - : Springer Science and Business Media LLC. - 1868-7083 .- 1868-7075. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages.Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling.Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy