SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sofer Zdenek) "

Sökning: WFRF:(Sofer Zdenek)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beydaghi, Hossein, et al. (författare)
  • Functionalized metallic transition metal dichalcogenide (TaS2) for nanocomposite membranes in direct methanol fuel cells
  • 2021
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 9:10, s. 6368-6381
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we designed a novel nanocomposite proton-exchange membrane (PEM) based on sulfonated poly(ether ether ketone) (SPEEK) and tantalum disulfide functionalized with terminal sulfonate groups (S-TaS2). The PEMs are prepared through a solution-casting method and exploited in direct methanol fuel cells (DMFCs). Two-dimensional S-TaS2 nanoflakes were prepared as a functional additive to produce the novel nanocomposite membrane for DMFCs due to their potential as a fuel barrier and an excellent proton conductor. To optimize the degree of sulfonation (DS) of SPEEK and the weight percentage (wt%) of S-TaS2 nanoflakes in PEMs, we used the central composite design of the response surface method. The optimum PEM was obtained for SPEEK DS of 1.9% and a weight fraction (wt%) of S-TaS2 nanoflakes of 70.2%. The optimized membrane shows a water uptake of 45.72%, a membrane swelling of 9.64%, a proton conductivity of 96.24 mS cm(-1), a methanol permeability of 2.66 x 10(-7) cm(2) s(-1), and a selectivity of 36.18 x 10(4) S s cm(-3). Moreover, SPEEK/S-TaS2 membranes show superior thermal and chemical stabilities compared to those of pristine SPEEK. The DMFC fabricated with the SPEEK/S-TaS2 membrane has reached the maximum power densities of 64.55 mW cm(-2) and 161.18 mW cm(-2) at 30 degrees C and 80 degrees C, respectively, which are similar to 78% higher than the values obtained with the pristine SPEEK membrane. Our results demonstrate that SPEEK/S-TaS2 membranes have a great potential for DMFC applications.
  •  
2.
  • Beydaghi, Hossein, et al. (författare)
  • Sulfonated NbS2-based proton-exchange membranes for vanadium redox flow batteries
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:16, s. 6152-6161
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (sigma) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 x 10(-7) to 2.34 x 10(-7) cm(2) min(-1). Meanwhile, it increases the membrane sigma and selectivity up to 94.35 mS cm(-2) and 40.32 x 10(4) S min cm(-3), respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm(-2), delivering a maximum power density of 0.83 W cm(-2) at a current density of 870 mA cm(-2). The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm(-2). This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
  •  
3.
  • Chanda, Debabrata, et al. (författare)
  • Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium
  • 2018
  • Ingår i: International journal of hydrogen energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0360-3199 .- 1879-3487. ; 43:27, s. 12129-12139
  • Tidskriftsartikel (refereegranskat)abstract
    • Today the search for new energy resources is a crucial topic for materials science. The development of new effective catalysts for the oxygen reduction reaction can significantly improve the performance of fuel cells as well as electrocatalytic hydrogen production. This study presents the scalable synthesis of nitrogen-doped graphene oxide for the oxygen reduction reaction. The combination of an ab initio theoretical investigation of the oxygen reduction reaction (ORR) mechanism and detailed electrochemical characterization allowed the identification of electrocatalytically active nitrogen functionalities. The dominant effect on electrocatalytic activity is the presence of graphitic and pyridinic nitrogen and also N-oxide functionalities. The overpotential of ORR for nitrogen-doped graphene oxide prepared by microwave-assisted synthesis outperformed the metal-doped graphene materials. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  • Chatzimanolis, Konstantinos, et al. (författare)
  • Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer
  • 2021
  • Ingår i: Nanoscale Advances. - : Royal Society of Chemistry. - 2516-0230. ; 3:11, s. 3124-3135
  • Tidskriftsartikel (refereegranskat)abstract
    • Perovskite solar cells (PSCs) have proved their potential for delivering high power conversion efficiencies (PCE) alongside low fabrication cost and high versatility. The stability and the PCE of PSCs can readily be improved by implementing engineering approaches that entail the incorporation of two-dimensional (2D) materials across the device's layered configuration. In this work, two-dimensional (2D) 6R-TaS2 flakes were exfoliated and incorporated as a buffer layer in inverted PSCs, enhancing the device's PCE, lifetime and thermal stability. A thin buffer layer of 6R-TaS2 flakes was formed on top of the electron transport layer to facilitate electron extraction, thus improving the overall device performance. The optimized devices reach a PCE of 18.45%, representing a 12% improvement compared to the reference cell. The lifetime stability measurements of the devices under ISOS-L2, ISOS-D1, ISOS-D1I and ISOS-D2I protocols revealed that the TaS2 buffer layer retards the intrinsic, thermally activated degradation processes of the PSCs. Notably, the devices retain more than the 80% of their initial PCE over 330 h under continuous 1 Sun illumination at 65 degrees C.
  •  
5.
  • Costa, Sara I. R., et al. (författare)
  • Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na-ion batteries
  • 2021
  • Ingår i: Chemistry - A European Journal. - : John Wiley & Sons. - 0947-6539 .- 1521-3765. ; 27:11, s. 3875-3886
  • Tidskriftsartikel (refereegranskat)abstract
    • Na2Ti3O7 (NTO) is considered a promising anode material for Na-ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+/Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na2Ti6O13. The enhanced electrochemical performance agrees with the higher Na+ ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.
  •  
6.
  • Děkanovský, Lukáš, et al. (författare)
  • Universal Capacitance Boost—Smart Surface Nanoengineering by Zwitterionic Molecules for 2D MXene Supercapacitor
  • 2023
  • Ingår i: Small Methods. - : Wiley. - 2366-9608. ; 7:818
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional nanomaterials, as one of the most widely used substrates for energy storage devices, have achieved great success in terms of the overall capacity. Despite the extensive research effort dedicated to this field, there are still major challenges concerning capacitance modulation and stability of the 2D materials that need to be overcome. Doping of the crystal structures, pillaring methods and 3D structuring of electrodes have been proposed to improve the material properties. However, these strategies are usually accompanied by a significant increase in the cost of the entire material preparation process and also a lack of the versatility for modification of the various types of the chemical structures. Hence in this work, versatile, cheap, and environmentally friendly method for the enhancement of the electrochemical parameter of various MXene-based supercapacitors (Ti3C2, Nb2C, and V2C), coated with functional and charged organic molecules (zwitterions—ZW) is introduced. The MXene-organic hybrid strategy significantly increases the ionic absorption (capacitance boost) and also forms a passivation layer on the oxidation-prone surface of the MXene through the covalent bonds. Therefore, this work demonstrates a new, cost-effective, and versatile approach (MXene-organic hybrid strategy) for the design and fabrication of hybrid MXene-base electrode materials for energy storage/conversion systems.
  •  
7.
  • Hsu, Yu-Kai, et al. (författare)
  • Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors
  • 2022
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, nanostructured nickel sulfides (NiS, Ni3S2 and NiS/Ni3S2) were fabricated directly on the surface of flexible carbon fiber cloths by simply modifying the deposition parameters of pulse-reversal (PR) electrodeposition method and utilized as binder-free flexible electrodes for aqueous hybrid supercapacitors (SCs). X-ray photoelectron spectroscopy and contact angle measurement studies verifies that the surface of heterostructure NiS/Ni3S2 electrode has enriched Ni3+ sites and highly hydrophilic nature. Consequently, the heterostructure NiS/Ni3S2 electrode demonstrated superior rate capability than that of both single phase NiS and Ni3S2 electrodes. Additionally, the hybrid SC device based on the flexible NiS/Ni3S2 electrode delivered a capacity of 40.4 mAh g−1 at a current density of 2 A g−1 and representing a maximum energy density of 32.3 Wh kg−1 at an impressive power density of 1.6 kW kg−1. Furthermore, the device provided excellent electrochemical stability with a capacity retention of 86.2%, even after a 120-h floating test. Hence, the heterostructure NiS/Ni3S2 with interlaced nanosheets morphology should be considered as promising binder-free flexible electrode materials for next-generation energy storage applications.
  •  
8.
  • Najafi, Leyla, et al. (författare)
  • Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction
  • 2020
  • Ingår i: Small. - : Wiley. - 1613-6810 .- 1613-6829. ; 16:50
  • Tidskriftsartikel (refereegranskat)abstract
    • The nanoengineering of the structure of transition metal dichalcogenides (TMDs) is widely pursued to develop viable catalysts for the hydrogen evolution reaction (HER) alternative to the precious metallic ones. Metallic group-5 TMDs have been demonstrated to be effective catalysts for the HER in acidic media, making affordable real proton exchange membrane water electrolysers. Their key-plus relies on the fact that both their basal planes and edges are catalytically active for the HER. In this work, the 6R phase of TaS2 is "rediscovered" and engineered. A liquid-phase microwave treatment is used to modify the structural properties of the 6R-TaS2 nanoflakes produced by liquid-phase exfoliation. The fragmentation of the nanoflakes and their evolution from monocrystalline to partly polycrystalline structures improve the HER-activity, lowering the overpotential at cathodic current of 10 mA cm(-2) from 0.377 to 0.119 V. Furthermore, 6R-TaS2 nanoflakes act as ideal support to firmly trap Pt species, which achieve a mass activity (MA) up 10 000 A g(Pt)(-1) at overpotential of 50 mV (20 000 A g(Pt)(-1) at overpotentials of 72 mV), representing a 20-fold increase of the MA of Pt measured for the Pt/C reference, and approaching the state-of-the-art of the Pt mass activity.
  •  
9.
  • Najafi, Leyla, et al. (författare)
  • Topochemical Transformation of Two-Dimensional VSe2 into Metallic Nonlayered VO2 for Water Splitting Reactions in Acidic and Alkaline Media
  • 2022
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:1, s. 351-367
  • Tidskriftsartikel (refereegranskat)abstract
    • The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The asproduced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O-2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The assynthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g(-1) at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm(-2) = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g(-1) at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm(-2) = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
  •  
10.
  • Najafi, Leyla, et al. (författare)
  • Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction : The emblematic case of "inert" ZrSe2 as catalyst for electrolyzers
  • 2022
  • Ingår i: Nano Select. - : Wiley-VCH Verlagsgesellschaft. - 2688-4011. ; 3:6, s. 1069-1081
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of earth-abundant electrocatalysts (ECs) operating at high current densities in water splitting electrolyzers is pivotal for the widespread use of the current green hydrogen production plants. Transition metal dichalcogenides (TMDs) have emerged as promising alternatives to the most efficient noble metal ECs, leading to a wealth of research. Some strategies based on material nanostructuring and hybridization, introduction of defects and chemical/physical modifications appeared as universal approaches to provide catalytic properties to TMDs, regardless of the specific material. In this work, we show that even a theoretically poorly catalytic (and poorly studied) TMD, namely zirconium diselenide (ZrSe2), can act as an efficient EC for the hydrogen evolution reaction (HER) when exfoliated in the form of two-dimensional (2D) few-layer flakes. We critically show the difficulties of explaining the catalytic mechanisms of the resulting ECs in the presence of complex structural and chemical modifications, which are nevertheless evaluated extensively. By doing so, we also highlight the easiness of transforming 2D TMDs into effective HER-ECs. To strengthen our message in practical environments, we report ZrSe2-based acidic (proton exchange membrane [PEM]) and alkaline water electrolyzers operating at 400 mA cm–2 at a voltage of 1.88 and 1.92 V, respectively, thus competing with commercial technologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy