SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sofieva V.) "

Sökning: WFRF:(Sofieva V.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dunn, R. J. H., et al. (författare)
  • GLOBAL CLIMATE : State of the Climate in 2020
  • 2021
  • Ingår i: Bulletin of the American Meteorological Society. - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 102:8
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Arndt, D. S., et al. (författare)
  • STATE OF THE CLIMATE IN 2017
  • 2018
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 99:8, s. S1-S310
  • Forskningsöversikt (refereegranskat)
  •  
3.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Ball, William T., et al. (författare)
  • Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:2, s. 1379-1394
  • Tidskriftsartikel (refereegranskat)abstract
    • Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60 degrees S and 60 degrees N outside the polar regions (60-90 degrees). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60 degrees S and 60 degrees N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60 degrees S and 60 degrees N. We find that total column ozone between 60 degrees S and 60 degrees N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
  •  
6.
  • Laeng, A., et al. (författare)
  • Validation of MIPAS IMK/IAA V5R_O3_224 ozone profiles
  • 2014
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 7:11, s. 3971-3987
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of an extensive validation program of the most recent version of ozone vertical profiles retrieved with the IMK/IAA (Institute for Meteorology and Climate Research/Instituto de Astrofisica de Andalucia) MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) research level 2 processor from version 5 spectral level 1 data. The time period covered corresponds to the reduced spectral resolution period of the MIPAS instrument, i.e., January 2005-April 2012. The comparison with satellite instruments includes all post-2005 satellite limb and occultation sensors that have measured the vertical profiles of tropospheric and stratospheric ozone: ACE-FTS, GOMOS, HALOE, HIRDLS, MLS, OSIRIS, POAM, SAGE II, SCIAMACHY, SMILES, and SMR. In addition, balloon-borne MkIV solar occultation measurements and ground-based Umkehr measurements have been included, as well as two nadir sensors: IASI and SBUV. For each reference data set, bias determination and precision assessment are performed. Better agreement with reference instruments than for the previous data version, V5R_O3_220 (Laeng et al., 2014), is found: the known high bias around the ozone vmr (volume mixing ratio) peak is significantly reduced and the vertical resolution at 35 km has been improved. The agreement with limb and solar occultation reference instruments that have a known small bias vs. ozonesondes is within 7% in the lower and middle stratosphere and 5% in the upper troposphere. Around the ozone vmr peak, the agreement with most of the satellite reference instruments is within 5 %; this bias is as low as 3% for ACE-FTS, MLS, OSIRIS, POAM and SBUV.
  •  
7.
  • Rahpoe, N., et al. (författare)
  • Relative drifts and biases between six ozone limb satellite measurements from the last decade
  • 2015
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 8:10, s. 4369-4381
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of European Space Agency's (ESA) climate change initiative, high vertical resolution ozone profiles from three instruments all aboard ESA's Envisat (GOMOS, MIPAS, SCIAMACHY) and ESA's third party missions (OSIRIS, SMR, ACE-FTS) are to be combined in order to create an essential climate variable data record for the last decade. A prerequisite before combining data is the examination of differences and drifts between the data sets. In this paper, we present a detailed analysis of ozone profile differences based on pairwise collocated measurements, including the evolution of the differences with time. Such a diagnosis is helpful to identify strengths and weaknesses of each data set that may vary in time and introduce uncertainties in long-term trend estimates. The analysis reveals that the relative drift between the sensors is not statistically significant for most pairs of instruments. The relative drift values can be used to estimate the added uncertainty in physical trends. The added drift uncertainty is estimated at about 3 % decade-1 (1s). Larger differences and variability in the differences are found in the lowermost stratosphere (below 20 km) and in the mesosphere.
  •  
8.
  • Sofieva, V. F., et al. (författare)
  • Harmonized dataset of ozone profiles from satellite limb and occultation measurements
  • 2013
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3516 .- 1866-3508. ; 5:2, s. 349-363
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present a HARMonized dataset of OZone profiles (HARMOZ) based on limb and occultation measurements from Envisat (GOMOS, MIPAS and SCIAMACHY), Odin (OSIRIS, SMR) and SCISAT (ACE-FTS) satellite instruments. These measurements provide high-vertical-resolution ozone profiles covering the altitude range from the upper troposphere up to the mesosphere in years 2001–2012. HARMOZ has been created in the framework of the European Space Agency Climate Change Initiative project.The harmonized dataset consists of original retrieved ozone profiles from each instrument, which are screened for invalid data by the instrument teams. While the original ozone profiles are presented in different units and on different vertical grids, the harmonized dataset is given on a common pressure grid in netCDF (network common data form)-4 format. The pressure grid corresponds to vertical sampling of ~ 1 km below 20 km and 2–3 km above 20 km. The vertical range of the ozone profiles is specific for each instrument, thus all information contained in the original data is preserved. Provided altitude and temperature profiles allow the representation of ozone profiles in number density or mixing ratio on a pressure or altitude vertical grid. Geolocation, uncertainty estimates and vertical resolution are provided for each profile. For each instrument, optional parameters, which are related to the data quality, are also included.For convenience of users, tables of biases between each pair of instruments for each month, as well as bias uncertainties, are provided. These tables characterize the data consistency and can be used in various bias and drift analyses, which are needed, for instance, for combining several datasets to obtain a long-term climate dataset.This user-friendly dataset can be interesting and useful for various analyses and applications, such as data merging, data validation, assimilation and scientific research.The dataset is available at http://www.esa-ozone-cci.org/?q=node/161 or at doi:10.5270/esa-ozone_cci-limb_occultation_profiles-2001_2012-v_1-201308.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy