SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sohal Sukhwinder Singh) "

Sökning: WFRF:(Sohal Sukhwinder Singh)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eapen, Mathew Suji, et al. (författare)
  • Chronic Obstructive Pulmonary Disease and Lung Cancer : Underlying Pathophysiology and New Therapeutic Modalities
  • 2018
  • Ingår i: Drugs. - : Springer Science and Business Media LLC. - 0012-6667 .- 1179-1950. ; 78:16, s. 1717-1740
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
  •  
2.
  • Grigg, Jonathan, et al. (författare)
  • Cigarette smoke and platelet-activating factor receptor dependent adhesion of Streptococcus pneumoniae to lower airway cells
  • 2012
  • Ingår i: Thorax. - : BMJ. - 1468-3296 .- 0040-6376. ; 67:10, s. 908-913
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Exposure to cigarette smoke (CS) is associated with increased risk of pneumococcal infection. The mechanism for this association is unknown. We recently reported that the particulate matter from urban air simulates platelet-activating factor receptor (PAFR)-dependent adhesion of pneumococci to airway cells. We therefore sought to determine whether CS stimulates pneumococcal adhesion to airway cells. Methods Human alveolar (A549), bronchial (BEAS2-B), and primary bronchial epithelial cells (HBEpC) were exposed to CS extract (CSE), and adhesion of Streptococcus pneumoniae determined. The role of PAFR in mediating adhesion was determined using a blocker (CV-3988). PAFR transcript level was assessed by quantitative real-time PCR, and PAFR expression by flow cytometry. Lung PAFR transcript level was assessed in mice exposed to CS, and bronchial epithelial PAFR expression assessed in active-smokers by immunostaining. Results In A549 cells, CSE 1% increased pneumococcal adhesion (p<0.05 vs control), PAFR transcript level (p<0.01), and PAFR expression (p<0.01). Pneumococcal adhesion to A549 cells was attenuated by CV-3988 (p<0.001). CSE 1% stimulated pneumococcal adhesion to BEAS2-B cells and HBEpC (p<0.01 vs control). CSE 1% increased PAFR expression in BEAS2-B (p<0.01), and in HBEpC (p<0.05). Lung PAFR transcript level was increased in mice exposed to CS in vivo (p<0.05 vs room air). Active smokers (n=16) had an increased percentage of bronchial epithelium with PAFR-positive cells (p<0.05 vs never smokers, n=11). Conclusion CSE stimulates PAFR-dependent pneumococcal adhesion to lower airway epithelial cells. We found evidence that CS increases bronchial PAFR in vivo.
  •  
3.
  • Jolly, Mohit Kumar, et al. (författare)
  • Epithelial–mesenchymal transition, a spectrum of states : Role in lung development, homeostasis, and disease
  • 2018
  • Ingår i: Developmental Dynamics. - : Wiley. - 1058-8388. ; 247:3, s. 346-358
  • Forskningsöversikt (refereegranskat)abstract
    • Epithelial–mesenchymal transition (EMT) plays key roles during lung development and many lung diseases such as chronic obstructive pulmonary disease (COPD), lung cancer, and pulmonary fibrosis. Here, integrating morphological observations with underlying molecular mechanisms, we highlight the functional role of EMT in lung development and injury repair, and discuss how it can contribute to pathogenesis of chronic lung disease. We discuss the evidence of manifestation of EMT and its potential driving role in COPD, idiopathic pulmonary fibrosis (IPF), bronchiolitis obliterans syndrome (BOS), and lung cancer, while noting that all cells need not display a full EMT in any of these contexts, i.e., often cells co-express epithelial and mesenchymal markers but do not fully convert to extracellular matrix (ECM) -producing fibroblasts. Finally, we discuss recent therapeutic attempts to restrict EMT in chronic lung disease. Developmental Dynamics 247:346–358, 2018.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy