SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sohn Kyung Ah) "

Sökning: WFRF:(Sohn Kyung Ah)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ho, Joshua W. K., et al. (författare)
  • Comparative analysis of metazoan chromatin organization
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 512:7515, s. 449-U507
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome function is dynamically regulated in part by chromatin, which consists of the histones, non-histone proteins and RNA molecules that package DNA. Studies in Caenorhabditis elegans and Drosophila melanogaster have contributed substantially to our understanding of molecular mechanisms of genome function in humans, and have revealed conservation of chromatin components and mechanisms(1-3). Nevertheless, the three organisms have markedly different genome sizes, chromosome architecture and gene organization. On human and fly chromosomes, for example, pericentric heterochromatin flanks single centromeres, whereas worm chromosomes have dispersed heterochromatin-like regions enriched in the distal chromosomal 'arms', and centromeres distributed along their lengths(4,5). To systematically investigate chromatin organization and associated gene regulation across species, we generated and analysed a large collection of genome-wide chromatin data sets from cell lines and developmental stages in worm, fly and human. Here we present over 800 new data sets from our ENCODE and modENCODE consortia, bringing the total to over 1,400. Comparison of combinatorial patterns of histone modifications, nuclear lamina-associated domains, organization of large-scale topological domains, chromatin environment at promoters and enhancers, nucleosome positioning, and DNA replication patterns reveals many conserved features of chromatin organization among the three organisms. We also find notable differences in the composition and locations of repressive chromatin. These data sets and analyses provide a rich resource for comparative and species-specific investigations of chromatin composition, organization and function.
  •  
2.
  • Seo, Jungryul, et al. (författare)
  • An Exploration of Machine Learning Methods for Robust Boredom Classification Using EEG and GSR Data
  • 2019
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 19:20
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, affective computing has been actively researched to provide a higher level of emotion-awareness. Numerous studies have been conducted to detect the user’s emotions from physiological data. Among a myriad of target emotions, boredom, in particular, has been suggested to cause not only medical issues but also challenges in various facets of daily life. However, to the best of our knowledge, no previous studies have used electroencephalography (EEG) and galvanic skin response (GSR) together for boredom classification, although these data have potential features for emotion classification. To investigate the combined effect of these features on boredom classification, we collected EEG and GSR data from 28 participants using off-the-shelf sensors. During data acquisition, we used a set of stimuli comprising a video clip designed to elicit boredom and two other video clips of entertaining content. The collected samples were labeled based on the participants’ questionnaire-based testimonies on experienced boredom levels. Using the collected data, we initially trained 30 models with 19 machine learning algorithms and selected the top three candidate classifiers. After tuning the hyperparameters, we validated the final models through 1000 iterations of 10-fold cross validation to increase the robustness of the test results. Our results indicated that a Multilayer Perceptron model performed the best with a mean accuracy of 79.98% (AUC: 0.781). It also revealed the correlation between boredom and the combined features of EEG and GSR. These results can be useful for building accurate affective computing systems and understanding the physiological properties of boredom.
  •  
3.
  • Seo, Jungryul, et al. (författare)
  • Machine learning approaches for boredom classification using EEG
  • 2019
  • Ingår i: Journal of Ambient Intelligence and Humanized Computing. - : Springer. - 1868-5137 .- 1868-5145. ; 10:10, s. 3831-3846
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, commercial physiological sensors and computing devices have become cheaper and more accessible, while computer systems have become increasingly aware of their contexts, including but not limited to users’ emotions. Consequently, many studies on emotion recognition have been conducted. However, boredom has received relatively little attention as a target emotion due to its diverse nature. Moreover, only a few researchers have tried classifying boredom using electroencephalogram (EEG). In this study, to perform this classification, we first reviewed studies that tried classifying emotions using EEG. Further, we designed and executed an experiment, which used a video stimulus to evoke boredom and non-boredom, and collected EEG data from 28 Korean adult participants. After collecting the data, we extracted its absolute band power, normalized absolute band power, differential entropy, differential asymmetry, and rational asymmetry using EEG, and trained these on three machine learning algorithms: support vector machine, random forest, and k-nearest neighbors (k-NN). We validated the performance of each training model with 10-fold cross validation. As a result, we achieved the highest accuracy of 86.73% using k-NN. The findings of this study can be of interest to researchers working on emotion recognition, physiological signal processing, machine learning, and emotion-aware system development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy