SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sollerman Jesper Professor) "

Sökning: WFRF:(Sollerman Jesper Professor)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nativi, Lorenzo, 1991- (författare)
  • Jet-wind interaction in neutron star mergers
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Besides being sources of gravitational waves, there has been evidence that neutron starmergers release neutron-rich material suitable for the production of heavy r-process nuclei.The radioactive decay of these freshly synthesised elements powers a rapidly evolvingthermal transient, the “macronova” (also known as “kilonova”). Its spectral propertiesstrongly depend on the ejecta composition, since neutron rich material synthesises heavyr-process elements that can efficiently trap radiation inside the ejecta producing a longlasting signal peaking in the red part of the spectrum. The first detection of a binaryneutron star merger was also accompanied by the evidence of a relativistic jet. Despitebeing ascertained the presence of these two dynamical components, neutron-rich ejectaand ultra-relativistic jet, the observational consequences of the interplay between the twois still unclear. In the paper we investigate such interaction through dedicated specialrelativistic hydrodynamic simulations, starting from a realistic environment obtained byprevious works. Light curves are then constructed up to the time scale of days by postprocessing the hydrodynamic results adopting proper radiative transfer. I show thatjet propagation within such environment can significantly affect the observation of theradioactive transient. A relativistic outflow can in fact “punch-away” a fraction of highopacity material before the brightening of the macronova, resulting in the transient beingbrighter and bluer for on-axis observers in the first few days. In this way the jet impactsboth time scale and luminosity of the macronova peak, that are the two main observablesallowing the estimate of the ejecta properties.
  •  
2.
  • Nyholm, Anders, 1985- (författare)
  • Supernova surroundings on circumstellar and galactic scales
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Some stars cease to be in a bright and destructive display called a supernova. This thesis explores what we can learn about supernovae (SNe) by studying their immediate surroundings, and what the SNe can teach us about their environments. The work presented is mostly based on the rich harvest of observations from 2009-2017 by the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). The PTF/iPTF was an untargeted sky survey at Palomar Observatory, aimed at finding and following up astronomical transients, such as SNe. During its existence, a massive star typically loses several solar masses of material. If much mass is lost in the decades or centuries before the SN, this material around the star (the circumstellar medium, CSM) will be quickly swept up by the ejecta of the eventual SN. This interaction can contribute strongly to the luminosity of the SN and make the light curve of an interacting SN carry signs of the progenitor star mass loss history. SNe with a hydrogen-rich CSM are called SNe Type IIn. A SN of this type, iPTF13z, found and followed by iPTF, had a slowly declining lightcurve with at least 5 major rebrightenings ("bumps") indicating rich structure in the CSM. Archival images clearly shows a precursor outburst about 210 days before the SN discovery, demonstrating the iPTF13z progenitor to be restless before its demise. Type IIn supernovae are heterogeneous, but only limited statistics has been done on samples. From PTF/iPTF, a sample of 42 SNe Type IIn was therefore selected, with photometry allowing their light curve rise times, decline rates and peak luminosities to be measured. It was shown that more luminous events are generally more long-lasting, but no strong correlation was found between rise times and peak luminosities. Two clusters of risetimes (around 20 and 50 days, respectively) were identified. The less long-lasting SNe Type IIn dominate the sample, suggesting that stars with a less extended dense CSM might be more common among SN Type IIn progenitors. Thermonuclear SNe (SNe Type Ia) are useful as standardisable candles, but no secure identification has yet been made of the progenitor system of a SN Type Ia. Using a late-time spectrum from the Nordic Optical Telescope of the nearby thermonuclear SN 2014J, a search for material ablated from a possible non-compact companion gave the upper limit of about 0.0085 solar masses of hydrogen-rich ablated gas. One likely explanation is that the SN 2014J progenitor system was a binary white dwarf. Supernovae are also useful tracers of the star formation history in their host galaxies, with SNe Type Ia tracing earlier epochs of star formation and exploding massive stars tracing more recent. For active galactic nuclei (AGN, the luminous centres of galaxies harbouring accreting supermassive black holes) SNe allows the so-called unification model to be tested. The unification model assumes that the main distinction between the two types of AGN is the viewing angle towards the central black hole, and that other properties (e.g. star formation history) of the host galaxies should be the same for the two AGN types. Matching 2190 SNe from PTF/iPTF to about 89000 AGN with spectra from the Sloan Digital Sky Survey, a significantly higher number of SNe in the hosts of AGN type 2 was found, challenging the unification model.
  •  
3.
  • Sagués Carracedo, Ana, 1993- (författare)
  • Chasing Cosmic Rarities : Kilonovae and Gravitationally Lensed Supernovae in Optical Surveys
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on two important topics in astrophysics: the detection of kilonovae (KNe) and gravitationally lensed supernovae (glSNe) in optical surveys. In the first part, the study quantifies the impact of survey depth and choice of filters on the detection probability of KNe. The results highlight the importance of accounting for asymmetries expected for KNe, and despite several search campaigns, no KNe were detected by the Zwicky Transient Facility (ZTF). Nonetheless, non-detection studies provided meaningful constraints on the luminosity function and on the rates of KNe. The findings contribute to advancing our understanding of these rare, fast, and faint transients. I also discuss the improvements in measuring the Hubble constant with follow-up data of KNe, including broadband photometry and spectrophotometric data from the upcoming IFU instrument MAAT. The second part of the thesis focuses on gravitationally lensed supernovae. The ZTF survey was expected to detect more than one strongly lensed supernova per year, but only one was identified in the first five years. The study presents simulations of lightcurves for lensed supernovae and new rates based on realistic survey simulations for ZTF. Optimal cuts to distinguish lensed supernovae from normal unlensed supernovae are also provided. The thesis discusses time delay and lightcurve modeling for the one event found during ZTF, SN Zwicky, and the lessons learned from it.The techniques developed in this thesis can be applied to future surveys to increase the detection rate of KNe and glSNe. These events and their underlying physics provide valuable insights in cosmology.
  •  
4.
  • Ergon, Mattias, 1967- (författare)
  • SN 2011dh and the progenitors of Type IIb supernovae
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Core-collapse supernovae (SNe) are the observed events following the collapse of the core of evolved massive stars. The gravitational energy released creates a powerful shock that disrupts the star and ejects the heated material into the surrounding circumstellar medium. The observed properties depend on the mass lost by the star, e.g. through stellar winds or mass transfer in binary systems, and the subject of this thesis is the class of Type IIb SNe, which are thought to have lost most, but not all of their hydrogen envelopes. A quite unique set of observations has recently been obtained for the Type IIb SN 2011dh, which was followed to more than a thousand days after the explosion, and observed by several groups at a wide range of wavelengths. In this work, the bulk portion of the ultraviolet to mid-infrared observations, as well as pre-explosion images of the progenitor star, are presented, discussed, and analysed. Lightcurve and spectral modelling of the SN observations, presented in this and related works, all suggest a progenitor of modest initial mass (<15 solar masses) with an extended and low-mass hydrogen envelope, consistent with what is found from the pre-explosion observations. Although mass-loss rates for single stars are uncertain, they are likely too weak to expel the hydrogen envelope for stars in this mass range. Therefore, an appealing alternative is mass-loss by Roche-lobe overflow in a binary system, as was likely the case for the Type IIb SN 1993J. Post-explosion observations have revealed a blue compact companion star blended with the fading SN 1993J, and a similar result has been claimed for SN 2011dh. The fact that some SNe arise from binary systems is not surprising given the large binary fraction observed for massive stars, and in this work, a grid of hydrodynamical SN models is used to infer modest initial masses (<15 solar masses) for most Type IIb SNe documented in the literature, suggesting that binary systems actually dominate the production of Type IIb SNe.
  •  
5.
  • Karamehmetoglu, Emir, 1992- (författare)
  • Looking for the high-mass progenitors of stripped-envelope supernovae
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Stripped-envelope supernovae were thought to be the explosions of very massive stars (& 20 M) that lost their outer layers of hydrogen and/or helium in strong stellar winds. However, recent studies have highlighted that most stripped-envelope supernovae seem to be arising from rela- tively lower-mass progenitor stars in the 12 20 M(sun) range, creating a mystery about the fate of the higher-mass stars. In this licentiate thesis, we review our knowledge of stripped-envelope supernovae, and present the astrophysical problem of their missing high-mass progenitors. The thesis focuses on observations of unique and rare stripped-envelope supernovae classified with modern optical surveys such as the intermediate Palomar Transient Factory (iPTF) and the Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO). In these surveys we have discovered stripped-envelope supernovae with long-lasting broad lightcurves, which are thought to be a marker for highly massive (& 20 M[sun]) progenitor stars. Despite this exciting association, there are only a handful of existing examples of stripped- envelope supernovae with broad lightcurves published in the literature, not numerous enough to account for the missing high-mass stars.During our efforts, the first object we focused on was OGLE-2014-SN-131, a long-lasting supernova in the southern sky initially classified by PESSTO. We re-classified it as a supernova Type Ibn interacting with a helium-rich circumstellar environment. Unlike all other Type Ibn’s in the literature, OGLE-2014-SN-131 was found to have a long rise-time and large lightcurve broadness. By modeling its bolometric lightcurve, we concluded that OGLE-2014-SN-131 must have had an unusually massive progenitor star. Furthermore, since an ordinary radioactive- decay model could not reproduce the lightcurve, we investigated both a magnetar and circum- stellar interaction as potential powering scenarios and favored the latter due to the signatures of interaction present in the spectra. Next, we looked for similar objects in the supernova dataset of the iPTF, which contains over 200 stripped-envelope supernovae. Searching in a sub-sample of 100 well-observed supernovae, we identified 11 to have unusually broad lightcurves. We also constrained the distribution of lightcurve broadness for iPTF stripped-envelope supernovae. The 11 with broad lightcurves will be studied carefully in a forthcoming paper. The first part of this forthcoming paper, which describes the careful statistical identification of these super-novae, is included in this thesis. In it we identify that 10% of the iPTF stripped-envelope supernova sample have broad lightcurves, which a surprisingly high fraction given their rarity in the published literature. Finally, we evaluate whether our estimate of the fraction of broad stripped-envelope supernovae could help explain the missing high-mass progenitors, and con- clude that they can only be a small fraction of the missing high-mass progenitors.
  •  
6.
  • Nyholm, Anders, 1985- (författare)
  • Bumpy light curves of interacting supernovae
  • 2017
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A supernova (SN) is the explosive destruction of a star. Via a luminous outpouring of radiation, the SN can rival the brightness of its SN host galaxy for months or years. In the past decade, astronomical surveys regularly observing the sky to deep limiting magnitudes have revealed that core collapse SNe (the demises of massive stars) are sometimes preceded by eruptive episodes by the progenitor stars during the years before the eventual SN explosion. Such SNe tend to show strong signatures of interaction between the SN ejecta and the circumstellar medium (CSM) deposited by the star before the SN explosion, likely by mass-loss episodes like the ones we have started to observe regularly. The complex CSM resolved around certain giant stars in our own galaxy and the eruptions of giant stars like η Car in the 19th century can be seen in this context. As the SN ejecta of an interacting SN sweep up the CSM of the progenitor, radiation from this process offers observers opportunity to scan the late mass loss history of the progenitor. In this thesis, interacting SNe and eruptive mass loss of their progenitors is discussed. The SN iPTF13z (discovered by the intermediate Palomar Transient Factory, iPTF) is presented. This transient was followed with optical photometry and spectroscopy during 1000 days and displayed a light curve with several conspicuous re-brigthenings ("bumps"), likely arising from SN ejecta interacting with denser regions in the CSM. Around 200 days before discovery, in archival data we found a clear precursor outburst lasting >~ 50 days. A well-observed (but not necessarily well understood) event like SN 2009ip, which showed both precursor outbursts and a light curve bump, makes an interesting comparison object. The embedding of the (possible) SN in a CSM makes it hard to tell if a destructive SN explosion actually happened. In this respect, iPTF13z is compared to e.g. SN 2009ip but also to long-lived interacting SNe like SN 1988Z. Some suggestions for future investigations are offered, to tie light curve bumps to precursor events and to clarify the question of core collapse in the ambiguous cases of some interacting SNe.
  •  
7.
  • Fremling, Christoffer, 1984- (författare)
  • PTF12os and iPTF13bvn : Two stripped-envelope supernovae discovered by the Palomar Transient Factory
  • 2016
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on research made by the intermediate Palomar Transient Factory [(i)PTF], and it is particularly closely tied to the still ongoing research on the stripped-envelope (SE) supernova (SN), iPTF13bvn (Type Ib), that occurred in the nearby galaxy NGC 5806. This SN was initially thought to have been the explosion of a very massive Wolf-Rayet (WR) star, but I have shown that this is very likely not the case. I suggest instead that the most likely scenario is that iPTF13bvn originated from a binary system where the envelope was stripped off from the SN progenitor by tidal forces from a companion star, in a similar way as for the very well studied Type IIb SN 2011dh. I have also investigated another SE SN, PTF12os (Type IIb), that occurred in the same galaxy as iPTF13bvn, with the conclusion that PTF12os and iPTF13bvn are very similar amongst themselves, and that both of them are also remarkably similar to SN 2011dh, in terms of all of the available observations (light-curves, spectra). Hydrodynamical models have been used to constrain the explosion parameters of iPTF13bvn, PTF12os and SN 2011dh; finding 56Ni masses in the range 0.063 − 0.075 M⊙, ejecta masses in the range 1.85 − 1.91 M⊙. Using the 56Ni-masses derived from our hydrodynamical modeling in combination with nebular models and late-time spectroscopy we were able to constrain the Zero-Age Main Sequence (ZAMS) mass to ∼ 12 M⊙ for iPTF13bvn and ≲ 15 M⊙ for PTF12os. In current stellar evolution models, stars with these masses on the ZAMS cannot lose their hydrogen envelopes and become SE SNe without binary interactions.
  •  
8.
  • Fremling, Christoffer, 1984- (författare)
  • Stripped-envelope supernovae discovered by the Palomar Transient Factory
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on research made by the intermediate Palomar Transient Factory [(i)PTF]. The focus is on stripped-envelope (SE) supernovae (SNe) discovered by (i)PTF, and it is closely tied to the research on the SE SN iPTF13bvn, that occurred in the nearby galaxy NGC 5806. This SN was initially thought to have been the explosion of a very massive Wolf-Rayet star, but we have shown that this is very likely not the case. We suggest instead that iPTF13bvn originated from a binary system where the envelope was stripped off from the SN progenitor by tidal forces from a companion (Paper I). PTF12os exploded in the same galaxy as iPTF13bvn, and our analysis shows that PTF12os and  iPTF13bvn were very similar, and that both were also remarkably similar to the Type IIb SN 2011dh, in terms of their light-curves and spectra. In Paper II, hydrodynamical models were used to constrain the explosion parameters of iPTF13bvn, PTF12os and SN 2011dh; finding 56Ni masses in the range 0.063-0.075 solar masses (Ms), ejecta masses in the range 1.85-1.91 Ms, and kinetic energies in the range 0.54-0.94 x 1051 erg. Furthermore, using nebular models and late-time spectroscopy we were able to constrain the Zero-Age Main Sequence (ZAMS) mass to ~ 12 Ms, for iPTF13bvn and ≤ 15 Ms for PTF12os. In current stellar evolution models, stars with these masses on the ZAMS cannot lose their envelopes and become SE SNe without binary interactions. In Paper III we investigate a peculiar SE SN, iPTF15dtg; this SN lacks both hydrogen and helium and shows a double-peaked LC with a broad main LC peak. Using hydrodynamical modeling we show that iPTF15dtg had a very large ejecta mass (~ 10 Ms), resulting from an explosion of a very massive star (~ 35 Ms). The initial peak in the LC can be explained by the presence of extended material around the star, likely due to an episode of strong mass-loss experienced by the progenitor prior to the explosion. In Paper IV we perform a statistical study of the spectra of all 176 SE SNe (Type IIb, Ib and Ic) discovered by (i)PTF. The spectra of Type Ic SNe show O absorption features that are both stronger and broader (indicating faster expansion velocities) compared to Type IIb and Type Ib SNe. These findings along with very weak He absorption support the traditional picture with Type Ic SNe being heavily stripped of their He envelopes prior to the explosions, and argue against alternative explanations, such as differences in explosive mixing of 56Ni among the SE SN subtypes.
  •  
9.
  • Taddia, Francesco, 1985- (författare)
  • Observations of rare supernovae and their environments
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Supernovae (SNe) are the final stage in the life of massive stars. Their explosion unbinds the progenitor star revealing its inner layers. The SN ejecta interact with the circumstellar material (CSM), providing further information on the progenitor star.In this work we present the study of rare SN subtypes, aiming to investigate their observational and physical properties and those of their progenitor stars.These studies include the analysis of SN samples as well as that of single objects.Two main SN classes are discussed: radioactively-powered events and SNe interacting with their CSM.Within the first group, we investigated the rare (~1% of core-collapse SNe) family of SN 1987A-like events. These SNe are found to be the explosion of compact, hydrogen-rich blue supergiant (BSG) stars, and to occur mainly in moderately low metallicity environs. We also studied a sample of 20 stripped-envelope (SE) SNe, which are also powered by the decay of radioactive 56Ni. These SNe are the result of the core-collapse of massive, hydrogen or even helium-poor stars stripped of their outer envelopes by line-driven winds and/or by the accretion onto companion stars.We investigated the differences among the early-time light curves of the subtypes forming the SE SN group (IIb, Ib, Ic, Ic-BL) and found that in all of them the 56Ni is strongly mixed out in the ejecta. This result suggests that the difference between helium-poor and helium-rich SNe is due to an actual lack of helium in SNe Ic and Ic-BL rather than to a different degree of 56Ni mixing.Our work on CSM-interacting SNe include the study of a sample of SNe IIn, i.e. core-collapse SNe interacting with hydrogen-rich CSM, and the analysis of SN 2008J, a particularly rare event which we interpreted as the interaction of a thermonuclear SN Ia with a thick hydrogen-rich CSM. Spectral analysis of the SN IIn sample suggests that these SNe are likely to be the explosion of luminous blue variable stars (LBVs), although other channels are not excluded.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy