SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soltwedel T.) "

Sökning: WFRF:(Soltwedel T.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Driemel, A., et al. (författare)
  • From pole to pole: 33 years of physical oceanography onboard R/V Polarstern
  • 2017
  • Ingår i: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 9:1, s. 211-220
  • Forskningsöversikt (refereegranskat)abstract
    • Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi: 10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data -the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.
  •  
2.
  • Bensi, M., et al. (författare)
  • Deep flow variability offshore south-west Svalbard (fram strait)
  • 2019
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • - Water mass generation and mixing in the eastern Fram Strait are strongly influenced by the interaction between Atlantic and Arctic waters and by the local atmospheric forcing, which produce dense water that substantially contributes to maintaining the global thermohaline circulation. The West Spitsbergen margin is an ideal area to study such processes. Hence, in order to investigate the deep flow variability on short-term, seasonal, and multiannual timescales, two moorings were deployed at ~1040 m depth on the southwest Spitsbergen continental slope. We present and discuss time series data collected between June 2014 and June 2016. They reveal thermohaline and current fluctuations that were largest from October to April, when the deep layer, typically occupied by Norwegian Sea Deep Water, was perturbed by sporadic intrusions of warmer, saltier, and less dense water. Surprisingly, the observed anomalies occurred quasi-simultaneously at both sites, despite their distance (~170 km). We argue that these anomalies may arise mainly by the effect of topographically trapped waves excited and modulated by atmospheric forcing. Propagation of internal waves causes a change in the vertical distribution of the Atlantic water, which can reach deep layers. During such events, strong currents typically precede thermohaline variations without significant changes in turbidity. However, turbidity increases during April-June in concomitance with enhanced downslope currents. Since prolonged injections of warm water within the deep layer could lead to a progressive reduction of the density of the abyssal water moving toward the Arctic Ocean, understanding the interplay between shelf, slope, and deep waters along the west Spitsbergen margin could be crucial for making projections on future changes in the global thermohaline circulation. © 2019 by the authors.
  •  
3.
  • Friedrich, Jana, et al. (författare)
  • Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11, s. 1215-1259
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX (“In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies”, www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of watercolumn oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
  •  
4.
  •  
5.
  • Muelbert, Jose H., et al. (författare)
  • ILTER : The International Long-Term Ecological Research Network as a Platform for Global Coastal and Ocean Observation
  • 2019
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media S.A.. - 2296-7745. ; 6
  • Forskningsöversikt (refereegranskat)abstract
    • Understanding the threats to global biodiversity and ecosystem services posed by human impacts on coastal and marine environments requires the establishment and maintenance of ecological observatories that integrate the biological, physical, geological, and biogeochemical aspects of ecosystems. This is crucial to provide scientists and stakeholders with the support and knowledge necessary to quantify environmental change and its impact on the sustainable use of the seas and coasts. In this paper, we explore the potential for the coastal and marine components of the International Long-Term Ecological Research Network (ILTER) to fill this need for integrated global observation, and highlight how ecological observations are necessary to address the challenges posed by climate change and evolving human needs and stressors within the coastal zone. The ILTER is a global network encompassing 44 countries and 700 research sites in a variety of ecosystems across the planet, more than 100 of which are located in coastal and marine environments (ILTER-CMS). While most of the ILTER-CMS were established after the year 2000, in some cases they date back to the early 1900s. At ILTER sites, a broad variety of abiotic and biotic variables are measured, which may feed into other global initiatives. The ILTER community has produced tools to harmonize and compare measurements and methods, allowing for data integration workflows and analyses between and within individual ILTER sites. After a brief historical overview of ILTER, with emphasis on the marine component, we analyze the potential contribution of the ILTER-CMS to global coastal and ocean observation, adopting the "Strength, Weakness, Opportunity and Threats (SWOT)" approach. We also identify ways in which the in situ parameters collected at ILTER sites currently fit within the Essential Ocean Variables framework (as proposed by the Framework for Ocean Observation recommendations) and provide insights on the use of new technology in long-term studies. Final recommendations point at the need to further develop observational activities at LTER sites and improve coordination among them and with external related initiatives in order to maximize their exploitation and address present and future challenges in ocean observations.
  •  
6.
  • Soltwedel, T., et al. (författare)
  • Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN
  • 2016
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X. ; 65, s. 89-102
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79°N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a Warm-Water-Anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes. © 2015 The Authors. Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy