SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Song Hocheol) "

Sökning: WFRF:(Song Hocheol)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Eva, et al. (författare)
  • Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)
  • 2009
  • Ingår i: Water Research. - : Elsevier BV. - 0043-1354 .- 1879-2448. ; 43:2, s. 490-498
  • Tidskriftsartikel (refereegranskat)abstract
    • This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions, Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24 h), initial fluoride concentration (1-100 mg L(-1)), temperature (10 and 2S degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mg g(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.
  •  
2.
  • Kumar, Eva, et al. (författare)
  • Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH)
  • 2010
  • Ingår i: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 159:1-3, s. 84-90
  • Tidskriftsartikel (refereegranskat)abstract
    • The present research evaluates the efficacy of granular ferric hydroxide (GFH) for perchlorate removal from aqueous solutions. Laboratory scale experiments were conducted to investigate the influence of various experimental parameters such as contact time, initial perchlorate concentration, temperature, pH and competing anions on perchlorate removal by GFH. Results demonstrated that perchlorate uptake rate was rapid and maximum adsorption was completed within first 30 min and equilibrium was achieved within 60 min. Pseudo-second-order model favorably explains the sorption mechanism of perchlorate on to GFH. The maximum sorption capacity of GFH for perchlorate was ca. 20.0 mg g(-1) at pH 6.0-6.5 at room temperature (25 degrees C). The optimum perchlorate removal was observed between pH range of 3-7. The Raman spectroscopy results revealed that perchlorate was adsorbed on GFH through electrostatic attraction between perchlorate and positively charged surface sites. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for perchlorate removal from water.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy