SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sonke Jeroen) "

Sökning: WFRF:(Sonke Jeroen)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • In ’t Veld, Sjors G.J.G., et al. (författare)
  • Detection and localization of early- and late-stage cancers using platelet RNA
  • 2022
  • Ingår i: Cancer Cell. - : Elsevier. - 1535-6108 .- 1878-3686. ; 40:9, s. 999-1009.e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening.
  •  
3.
  • Koenig, Alkuin M., et al. (författare)
  • Observed in-plume gaseous elemental mercury depletion suggests significant mercury scavenging by volcanic aerosols
  • 2023
  • Ingår i: Environmental Science: Atmospheres. - 2634-3606. ; 3:10, s. 1418-1438
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial volcanism is known to emit mercury (Hg) into the atmosphere. However, despite many years of investigation, its net impact on the atmospheric Hg budget remains insufficiently constrained, in part because the transformations of Hg in volcanic plumes as they age and mix with background air are poorly understood. Here we report the observation of complete gaseous elemental mercury (GEM) depletion events in dilute and moderately aged (& SIM;3-7 hours) volcanic plumes from Piton de la Fournaise on Reunion Island. While it has been suggested that co-emitted bromine could, once photochemically activated, deplete GEM in a volcanic plume, we measured low bromine concentrations in both the gas- and particle-phase and observed complete GEM depletion even before sunrise, ruling out a leading role of bromine chemistry here. Instead, we hypothesize that the GEM depletions were mainly caused by gas-particle interactions with sulfate-rich volcanic particles (mostly of submicron size), abundantly present in the dilute plume. We consider heterogeneous GEM oxidation and GEM uptake by particles as plausible manifestations of such a process and derive empirical rate constants. By extrapolation, we estimate that volcanic aerosols may scavenge 210 Mg y(-1) (67-480 Mg y(-1)) of Hg from the atmosphere globally, acting effectively as atmospheric mercury sink. While this estimate is subject to large uncertainties, it highlights that Hg transformations in aging volcanic plumes must be better understood to determine the net impact of volcanism on the atmospheric Hg budget and Hg deposition pathways.
  •  
4.
  • Li, Chuxian, et al. (författare)
  • Recent 210Pb, 137Cs and 241Am accumulation in an ombrotrophic peatland from Amsterdam Island (Southern Indian Ocean)
  • 2017
  • Ingår i: Journal of Environmental Radioactivity. - : Elsevier BV. - 0265-931X. ; 175-176, s. 164-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the past 50 years, 210Pb, 137Cs and 241Am have been abundantly used in reconstructing recent sediment and peat chronologies. The study of global aerosol-climate interaction is also partially depending on our understanding of 222Rn-210Pb cycling, as radionuclides are useful aerosol tracers. However, in comparison with the Northern Hemisphere, few data are available for these radionuclides in the Southern Hemisphere, especially in the South Indian Ocean. A peat core was collected in an ombrotrophic peatland from the remote Amsterdam Island (AMS) and was analyzed for 210Pb, 137Cs and 241Am radionuclides using an underground ultra-low background gamma spectrometer. The 210Pb Constant Rate of Supply (CRS) model of peat accumulations is validated by peaks of artificial radionuclides (137Cs and 241Am) that are related to nuclear weapon tests. We compared the AMS 210Pb data with an updated 210Pb deposition database. The 210Pb flux of 98 ± 6 Bq·m−2·y−1 derived from the AMS core agrees with data from Madagascar and South Africa. The elevated flux observed at such a remote location may result from the enhanced 222Rn activity and frequent rainfall in AMS. This enhanced 222Rn activity itself may be explained by continental air masses passing over southern Africa and/or Madagascar. The 210Pb flux at AMS is higher than those derived from cores collected in coastal areas in Argentina and Chile, which are areas dominated by marine westerly winds with low 222Rn activities. We report a 137Cs inventory at AMS of 144 ± 13 Bq·m−2 (corrected to 1969). Our data thus contribute to the under-represented data coverage in the mid-latitudes of the Southern Hemisphere.
  •  
5.
  • Petäjä, Tuukka, et al. (författare)
  • Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:14, s. 8551-8592
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project iCUPE - integrative and Comprehensive Understanding on Polar Environments to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.
  •  
6.
  • Soerensen, Anne L., et al. (författare)
  • A mass budget for mercury and methylmercury in the Arctic Ocean
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:4, s. 560-575
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated biological concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, are observed throughout the Arctic Ocean, but major sources and degradation pathways in seawater are not well understood. We develop a mass budget for mercury species in the Arctic Ocean based on available data since 2004 and discuss implications and uncertainties. Our calculations show that high total mercury (Hg) in Arctic seawater relative to other basins reflect large freshwater inputs and sea ice cover that inhibits losses through evasion. We find that most net MeHg production (20Mga(-1)) occurs in the subsurface ocean (20-200m). There it is converted to dimethylmercury (Me2Hg: 17Mga(-1)), which diffuses to the polar mixed layer and evades to the atmosphere (14Mga(-1)). Me2Hg has a short atmospheric lifetime and rapidly degrades back to MeHg. We postulate that most evaded Me2Hg is redeposited as MeHg and that atmospheric deposition is the largest net MeHg source (8Mga(-1)) to the biologically productive surface ocean. MeHg concentrations in Arctic Ocean seawater are elevated compared to lower latitudes. Riverine MeHg inputs account for approximately 15% of inputs to the surface ocean (2.5Mga(-1)) but greater importance in the future is likely given increasing freshwater discharges and permafrost melt. This may offset potential declines driven by increasing evasion from ice-free surface waters. Geochemical model simulations illustrate that for the most biologically relevant regions of the ocean, regulatory actions that decrease Hg inputs have the capacity to rapidly affect aquatic Hg concentrations.
  •  
7.
  • Sonke, Jeroen E., et al. (författare)
  • Global change effects on biogeochemical mercury cycling
  • 2023
  • Ingår i: Ambio. - : Springer. - 0044-7447 .- 1654-7209. ; 52, s. 853-876
  • Forskningsöversikt (refereegranskat)abstract
    • Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (5)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Skov, Henrik (2)
Soerensen, Anne L. (2)
Griffioen, Arjan W. (1)
Roberts, Sarah (1)
Verdonck-de Leeuw, I ... (1)
Riipinen, Ilona (1)
visa fler...
Massling, Andreas (1)
Björn, Erik (1)
Teunissen, Charlotte ... (1)
MacLeod, Matthew (1)
Ebinghaus, Ralf (1)
Arellano, Santiago, ... (1)
Roos, Eva (1)
Sellegri, Karine (1)
Le Roux, Gael (1)
De Vleeschouwer, Fra ... (1)
Mason, Robert (1)
Rissanen, Matti (1)
Baltensperger, Urs (1)
Prevot, Andre S. H. (1)
Franck, Anna (1)
Sachs, Torsten (1)
Meijers-Heijboer, Ha ... (1)
Petäjä, Tuukka (1)
Vitale, Vito (1)
Besselink, Marc G. (1)
Wehner, Birgit (1)
Schmale, Julia (1)
Eleftheriadis, Konst ... (1)
Wurdinger, Thomas (1)
Tannous, Bakhos A (1)
Bahce, Idris (1)
Smit, Egbert F (1)
Rose, Clemence (1)
Duplissy, Ella-Maria (1)
El Haddad, Imad (1)
Muir, Derek C. G. (1)
Van der Putten, Nath ... (1)
Berchet, Antoine (1)
Paris, Jean-Daniel (1)
Colomb, Aurélie (1)
Lokhorst, Henk (1)
Sol, Nik (1)
Ylstra, Bauke (1)
Dorsman, Josephine (1)
Reijneveld, Jaap C (1)
Wesseling, Pieter (1)
Best, Myron G. (1)
Tannous, Jihane (1)
Westerman, Bart A. (1)
visa färre...
Lärosäte
Umeå universitet (2)
Stockholms universitet (2)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Naturhistoriska riksmuseet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (6)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy