SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sontheimer H.) "

Sökning: WFRF:(Sontheimer H.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Escartin, C., et al. (författare)
  • Reactive astrocyte nomenclature, definitions, and future directions
  • 2021
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 24, s. 312-325
  • Tidskriftsartikel (refereegranskat)abstract
    • Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions. Good-bad binary classifications fail to describe reactive astrocytes in CNS disorders. Here, 81 researchers reach consensus on widespread misconceptions and provide definitions and recommendations for future research on reactive astrocytes.
  •  
2.
  • Novak, R., et al. (författare)
  • Robotic fluidic coupling and interrogation of multiple vascularized organ chips
  • 2020
  • Ingår i: Nature Biomedical Engineering. - : Nature Research. - 2157-846X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an ‘interrogator’ that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood–brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels. We used the robotic interrogator and a physiological multicompartmental reduced-order model of the experimental system to quantitatively predict the distribution of an inulin tracer perfused through the multi-organ human-body-on-chips. The automated culture system enables the imaging of cells in the organ chips and the repeated sampling of both the vascular and interstitial compartments without compromising fluidic coupling.
  •  
3.
  • Peng, CG, et al. (författare)
  • Termination of cell-type specification gene programs by the miR-183 cluster determines the population sizes of low-threshold mechanosensitive neurons
  • 2018
  • Ingår i: Development (Cambridge, England). - : The Company of Biologists. - 1477-9129 .- 0950-1991. ; 145:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Touch and mechanical sensations require the development of several different kinds of sensory neurons dedicated to respond to certain types of mechanical stimuli. The transcription factor Shox2 (short stature homeobox 2) is involved in the generation of TRKB+ low-threshold mechanoreceptors (LTMRs), but mechanisms terminating this program and allowing for alternative fates are unknown. Here, we show that the conditional loss of miR-183-96-182 cluster leads to a failure of extinction of Shox2 during development and an increase in the proportion of Aδ LTMRs (TRKB+/NECAB2+) neurons at the expense of Aβ slowly adapting (SA)-LTMRs (TRKC+/Runx3−) neurons. Conversely, overexpression of miR-183 cluster that represses Shox2 expression, or loss of Shox2, both increases the Aβ SA-LTMRs population at expense of Aδ LTMRs. Our results suggest that the miR-183 cluster determines the timing of Shox2 expression by direct targeting during development, and through this determines the population sizes of Aδ LTMRs and Aβ SA-LTMRs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy