SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soomere T.) "

Sökning: WFRF:(Soomere T.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reckermann, M., et al. (författare)
  • Human impacts and their interactions in the Baltic Sea region
  • 2022
  • Ingår i: Earth Syst. Dynam.. - : Copernicus GmbH. - 2190-4987 .- 2190-4979. ; 13:1, s. 1-80
  • Forskningsöversikt (refereegranskat)abstract
    • Coastal environments, in particular heavily populated semi-enclosed marginal seas and coasts like the Baltic Sea region, are strongly affected by human activities. A multitude of human impacts, including climate change, affect the different compartments of the environment, and these effects interact with each other. As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region, and their interrelations. Some are naturally occurring and modified by human activities (i.e. climate change, coastal processes, hypoxia, acidification, submarine groundwater discharges, marine ecosystems, non-indigenous species, land use and land cover), some are completely human-induced (i.e. agriculture, aquaculture, fisheries, river regulations, offshore wind farms, shipping, chemical contamination, dumped warfare agents, marine litter and microplastics, tourism, and coastal management), and they are all interrelated to different degrees. We present a general description and analysis of the state of knowledge on these interrelations. Our main insight is that climate change has an overarching, integrating impact on all of the other factors and can be interpreted as a background effect, which has different implications for the other factors. Impacts on the environment and the human sphere can be roughly allocated to anthropogenic drivers such as food production, energy production, transport, industry and economy. The findings from this inventory of available information and analysis of the different factors and their interactions in the Baltic Sea region can largely be transferred to other comparable marginal and coastal seas in the world.
  •  
2.
  • Weisse, R., et al. (författare)
  • Sea level dynamics and coastal erosion in the Baltic Sea region
  • 2021
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 12:3, s. 871-898
  • Tidskriftsartikel (refereegranskat)abstract
    • There are a large number of geophysical processes affecting sea level dynamics and coastal erosion in the Baltic Sea region. These processes operate on a large range of spatial and temporal scales and are observed in many other coastal regions worldwide. This, along with the outstanding number of long data records, makes the Baltic Sea a unique laboratory for advancing our knowledge on interactions between processes steering sea level and erosion in a climate change context. Processes contributing to sea level dynamics and coastal erosion in the Baltic Sea include the still ongoing viscoelastic response of the Earth to the last deglaciation, contributions from global and North Atlantic mean sea level changes, or contributions from wind waves affecting erosion and sediment transport along the subsiding southern Baltic Sea coast. Other examples are storm surges, seiches, or meteotsunamis which primarily contribute to sea level extremes. Such processes have undergone considerable variation and change in the past. For example, over approximately the past 50 years, the Baltic absolute (geocentric) mean sea level has risen at a rate slightly larger than the global average. In the northern parts of the Baltic Sea, due to vertical land movements, relative mean sea level has decreased. Sea level extremes are strongly linked to variability and changes in large-scale atmospheric circulation. The patterns and mechanisms contributing to erosion and accretion strongly depend on hydrodynamic conditions and their variability. For large parts of the sedimentary shores of the Baltic Sea, the wave climate and the angle at which the waves approach the nearshore region are the dominant factors, and coastline changes are highly sensitive to even small variations in these driving forces. Consequently, processes contributing to Baltic sea level dynamics and coastline change are expected to vary and to change in the future, leaving their imprint on future Baltic sea level and coastline change and variability. Because of the large number of contributing processes, their relevance for understanding global figures, and the outstanding data availability, global sea level research and research on coastline changes may greatly benefit from research undertaken in the Baltic Sea.
  •  
3.
  • Ruban, V., et al. (författare)
  • Rogue waves - towards a unifying concept?: Discussions and debates
  • 2010
  • Ingår i: The European Physical Journal. Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 185:1, s. 5-15
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper contains the discussion inputs by the contributors of the special issue on the subject of rogue waves.
  •  
4.
  • Soomere, T., et al. (författare)
  • Management of coastal pollution by means of smart placement of human activities
  • 2011
  • Ingår i: Journal of Coastal Research. - 0749-0208 .- 1551-5036. ; 57, s. 951-955
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe recent developments in the new technique that addresses the potential for a systematic increase in the time until an adverse impact (for example, an oil spill) reaches a vulnerable sea area and a corresponding decrease in the probability of the impact reaching such an area after an accident has happened. The risk of coastal pollution is estimated using statistical analysis of a large pool of numerically simulated trajectories of water particles in the surface layer. A decrease in the risk level is possible by means of minimizing the probability for a coastal hit or by maximizing the time span until the pollution reaches the coast. Environmental gain is then achieved by placing the dangerous activities into sea areas (or redirecting ship traffic accordingly), from which the transport of the adverse impact to the coast is less likely or takes the most time. As a key new development, we introduce and analyze a measure of risk that systematically accounts for the potential increase in the sailing distance associated with the proposed approach. The resulting gain from the use of the corresponding optimal fairways is estimated for the test area of the Gulf of Finland in the Baltic Sea.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy