SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soomro Razium Ali) "

Sökning: WFRF:(Soomro Razium Ali)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbas, Malik Waseem, et al. (författare)
  • Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid
  • 2019
  • Ingår i: Microchemical journal (Print). - : ELSEVIER SCIENCE BV. - 0026-265X .- 1095-9149. ; 146, s. 517-524
  • Tidskriftsartikel (refereegranskat)abstract
    • The study explores carbon quantum dots (C-dots) as potential candidates for enhancing the signal sensitivity of an electrochemical sensor devised for biologically important molecule, such as uric acid (UA). The C-dots were evaluated for their electrochemical characteristics in combination with Fe3O4 nanoparticles (Fe3O4 NPs), which were applied as the primary electro-catalytic promoter. The hybrid nanocomposite (C-dots/Fe3O4 HCs) formation was achieved by facilitating the adsorption of C-dots over Fe3O4 NPs using amine-carbonyl interactions. Unlike, one pot method, the proposed strategy enables aggregation-free coverage of Fe3O4 NPs with highly conductive layer of C-dots that can act as conduction centres to support ultra-fast electron transfer kinetics to satisfy the need of high signal sensitivity. The hybrid composite demonstrated remarkable signal improvement when tested against the electrochemical oxidation of UA. The heighten current response and lower over-potential values enabled development of a DC-amperometric (DC-AMP) sensor for UA with a linear working range of 0.01 to 0.145 mu M and signal sensitivity measurable up to 6.0 x 10(-9) M. The said improvement was manifested as a synergetic outcome of active redox couple (Fe (III/II)), larger surface area of Fe3O4 NPs engulfed with a layer of highly conductive C-dots acting as efficient charge sensitisers.
  •  
2.
  • Abbas, Zaheer, et al. (författare)
  • In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker
  • 2020
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2-5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody-antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pgmL(-1) to 50 ng.mL(-1) with signal sensitivity achievable up to 0.15 pgmL(-1). The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.
  •  
3.
  • Ali Soomro, Razium, et al. (författare)
  • A highly selective and sensitive electrochemical determination of melamine based on succinic acid functionalized copper oxide nanostructures
  • 2015
  • Ingår i: RSC Advances. - : ROYAL SOC CHEMISTRY. - 2046-2069. ; 5:127, s. 105090-105097
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents the development of a highly selective and sensitive electrochemical sensor for the determination of melamine from aqueous environments. The sensor system is based on functionalised marigold-like CuO nanostructures fabricated using a controlled hydrothermal process, where the utilised succinic acid is considered to play a dual role as a functionalising and growth controlling agent (modifier). The fabricated nanostructures exhibit sharp and well-ordered structural features with dimensions (thickness) in the range of 10-50 nm. The sensor system exhibits strong linearity within the concentration range of 0.1 x 10(-9) to 5.6 x 10(-9) M and demonstrates an excellent limit of detection up to 0.1 x 10(-10) M. The extreme selectivity and sensing capability of the developed sensor is attributed to the synergy of selective interaction between succinic acid and melamine moieties, and the high surface area of marigold-like CuO nanostructures. In addition to this, the developed sensor was also utilised for the determination of melamine from real milk samples collected from different regions of Hyderabad, Pakistan. The obtained excellent recoveries proved the feasibility of the sensor for real life applications. The sensor system offers an operative measure for detecting extremely low melamine content with high selectivity in food contents.
  •  
4.
  • Ali Soomro, Razium, et al. (författare)
  • Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide
  • 2016
  • Ingår i: Electrochimica Acta. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0013-4686 .- 1873-3859. ; 190, s. 972-979
  • Tidskriftsartikel (refereegranskat)abstract
    • This work reports a highly sensitive electrochemical sensor for organophosphate pesticide (malathion) based on unique and attractive CuO nanostructures. The discussed nanostructures were synthesized using low temperature hydrothermal growth method utilizing green amino acids such as glycine, serine, threonine and histidine as effective bio-compatible templates. The morphological evaluation demonstrated formation of unique and attractive 1-D nanostructures reflecting the effective growth controlling and directing capabilities of the utilized amino acids. The as-synthesized CuO nanostructures were noted to possess high affinity towards malathion which enabled their application as electrode material for the development of affinity based electrochemical sensor. Although, the as-synthesized morphologies were all sensitive towards malathion but the glycine directed triangular flake-like nanostructures exhibited greater sensitivity compared to other competitors. The electrochemical behaviour of the modified electrodes was studied using cyclic voltammetry (CV) whereas, differential pulse voltammetry (DPV) was utilized for the analytical evaluation of the sensor. The developed sensor demonstrated high reproducibility, stability, wide detection window (1-12 nM), and sensitivity to detect malathion up to 0.1 nM based on suppressive signal measurement. In addition, the sensor system exhibited high anti-interference capability in the presence of common co-existing pesticides like lindane, carbendazim, and trichlorfon. The developed sensor provides an effective measure for detecting extremely low concentration of malathion with wide applicability in various fields. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
5.
  • Ali Soomro, Razium, et al. (författare)
  • Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures
  • 2015
  • Ingår i: Journal of Solid State Electrochemistry. - : Springer Verlag (Germany). - 1432-8488 .- 1433-0768. ; 19:3, s. 913-922
  • Tidskriftsartikel (refereegranskat)abstract
    • A simple, economical and mild solution chemistry method was used to synthesize diverse nickel oxide (NiO) nanostructures employing methionine as a growth-directing agent. The as-synthesized NiO nanostructures were observed to possess a unique skein-shape morphology with uniform spherical distribution. The NiO nanoskein (NiO NSk) formation was extensively studied using X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) techniques, respectively. The unique NiO NSks exhibited better electrocatalytic activity towards glucose oxidation in alkaline media, enabling the development of a highly sensitive non-enzymatic glucose sensor. The observed analytical properties included high sensitivity (1915 mu A mM(-1) cm(-2)), wide linear range (0.1-5.0 mM), low detection limit (0.7 mu M), higher stability and reproducibility. Moreover, the sensor is selective in the presence of interfering species such as ascorbic acid (AA), uric acid (UA) and dopamine (DP) during the non-enzymatic glucose sensing. The worthy-of-notice electrocatalytic activity and economical feasible preparation of NiO NSk-shaped electroactive material for direct glucose-sensing applications make the present study of high interest for the fabrication of low-cost devices. A NiO NSk-based glucose sensor has also been employed for glucose determination in human serum with adequate results, suggesting high potential for the routine monitoring of glucose from biotechnology, clinical and food industry samples.
  •  
6.
  • Ali Soomro, Razium, et al. (författare)
  • Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide
  • 2015
  • Ingår i: Materials Science in Semiconductor Processing. - : Elsevier. - 1369-8001 .- 1873-4081. ; 34, s. 373-381
  • Tidskriftsartikel (refereegranskat)abstract
    • The study reports the synthesis of cobalt oxide (Co3O4) nanostructures and their application in enzyme free electrochemical sensing of glucose. The synthesized nanostructures were elaborately characterized via number of analytical techniques including scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The as-synthesized nanostructures of Co3O4 were found to exhibited nanodisc like morphology with the size dimension in range of 300-500 nm. The obtained morphological features were evaluated for their electrochemical potential towards oxidation of glucose which enabled development of sensitive (27.33 mu A mM(-1) cm(-2)), and stable enzyme free glucose sensor. In addition, the developed sensor showed excellent linearity (r(2)=0.9995), wide detection range (0.5-5.0 mM), lower detection limit (0.8 mu M) and extreme selectivity towards glucose in the presence of common interferents like dopamine (DP), ascorbic acid (AA) and uric acid (UA). The successfully application of developed sensor for real blood glucose analysis further reflects its capability for routine glucose measurement.
  •  
7.
  • Ali Soomro, Razium, et al. (författare)
  • Glutaric Acid Assisted Fabrication of CuO Nanostructures and their Application in Development of Highly Sensitive Electrochemical Sensor System for Carbamates
  • 2016
  • Ingår i: Electroanalysis. - : WILEY-V C H VERLAG GMBH. - 1040-0397 .- 1521-4109. ; 28:7, s. 1634-1640
  • Tidskriftsartikel (refereegranskat)abstract
    • This work describes the fabrication of unique arrow head shaped CuO nanostructures using simple hydrothermal treatment method. The highly attractive features were obtained by the application of glutaric acid utilised simultaneous as template and functionalising agent. The functionalised nanostructures were known to possess excellent potential towards the electro-catalytic oxidation of carbofuran pesticide. The generated intense electrochemical signal with lower potential value enabled sensitive and selective determination of carbofuran up to 1 x 10(-3) mu M with wide sensing window in range of 0.01 to 0.16 mu M. The feasibility of the developed sensor system for the practical application was also studied by testing its potential in real sample extracts of various vegetables. The excellent recoveries demonstrated the analytical robustness of the developed sensor system. The sensor system utilises a new and simple approach towards sensitive determination of toxic pesticides reflecting its wide spectrum application in various fields.
  •  
8.
  • Ali Soomro, Razium, et al. (författare)
  • Glycine-assisted preparation of Co3O4 nanoflakes with enhanced performance for non-enzymatic glucose sensing
  • 2015
  • Ingår i: MATERIALS EXPRESS. - : AMER SCIENTIFIC PUBLISHERS. - 2158-5849. ; 5:5, s. 437-444
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study a simple, inexpensive and efficient route is proposed to synthesise attractive cobalt oxide (Co3O4) nanostructures using glycine as an effective growth controller and regulator. The as-synthesised Co3O4 nanostructures were observed to possess unique nanoflake shape morphological features with highly dense distribution. The formation of Co3O4 nanoflakes (Co3O4 NFKs) was elaborately explored using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Scanning electron microscopy (SEM) respectively. The unique Co3O4 nanoflakes were known to possess excellent electro-catalytic potential for the oxidation of glucose in alkaline medium. This potential property allowed successful development of highly sensitive (1180 mu A mM(-1) cm(-2)), selective and stable non-enzymatic glucose sensor. In addition, the developed sensor had a wide working range (0.1-5.0 mM), low limit of detection (0.7 mu M), and excellent reproducibility, besides the capability of analysing real blood glucose samples.
  •  
9.
  • Ali Soomro, Razium, et al. (författare)
  • Highly sensitive determination of atropine using cobalt oxide nanostructures: Influence of functional groups on the signal sensitivity
  • 2016
  • Ingår i: Analytica Chimica Acta. - : ELSEVIER SCIENCE BV. - 0003-2670 .- 1873-4324. ; 948, s. 30-39
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co3O4 nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co3O4 nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co3O4-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01 -0.46 mu M. The developed sensor exhibited excellent working linearity (R-2 = 0.999) and signal sensitivity up to 0.001 mu M of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid. (C) 2016 Elsevier B.V. All rights reserved.
  •  
10.
  • Ali Soomro, Razium, et al. (författare)
  • Practice of diclofenac sodium for the hydrothermal growth of NiO nanostructures and their application for enzyme free glucose biosensor
  • 2016
  • Ingår i: Microsystem Technologies. - : SPRINGER. - 0946-7076 .- 1432-1858. ; 22:10, s. 2549-2557
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study diclofenac sodium (DFS), an analgesic drug has been employed as an effective template for the synthesis of NiO nanostructures. The NiO nanostructures were synthesised using low temperature hydrothermal growth method, both in the presence and absence of the DFS drug. The synthesised nanostructures were studied for their structural, compositional and electrochemical properties using scanning electron microscopy, X-ray diffraction and cyclic voltammetry. The synthesised nanostructures were then utilised for the modification of glassy carbon electrode which were then utilised for the electro-catalytic enzyme free glucose sensing in alkaline media. The competitive experiments suggested that although, both nanostructures possess excellent capability of glucose sensing, the NiO nanoflakes modified electrode was found to be twice as much as sensitive (2584 A mu A mM(-1) cm(-2)) as nanoflowers based electrode (1154 A mu A mM(-1) cm(-2)). The NiO nanoflakes based sensor further demonstrated excellent anti-interference potential in the presence of common interferents like uric acid, ascorbic acid and dopamine. In addition, the successful application NiO nanoflakes based sensor to determine real blood glucose concentration further suggest its feasibility for real sample analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy