SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soreq Y.) "

Sökning: WFRF:(Soreq Y.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schiller, D, et al. (författare)
  • The Human Affectome
  • 2024
  • Ingår i: Neuroscience and biobehavioral reviews. - 1873-7528. ; 158, s. 105450-
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Abramowicz, H., et al. (författare)
  • Conceptual design report for the LUXE experiment
  • 2021
  • Ingår i: European Physical Journal-Special Topics. - : Springer Science and Business Media LLC. - 1951-6355 .- 1951-6401. ; 230:11, s. 2445-2560
  • Tidskriftsartikel (refereegranskat)abstract
    • This Conceptual Design Report describes LUXE (Laser Und XFEL Experiment), an experimental campaign that aims to combine the high-quality and high-energy electron beam of the European XFEL with a powerful laser to explore the uncharted terrain of quantum electrodynamics characterised by both high energy and high intensity. We will reach this hitherto inaccessible regime of quantum physics by analysing high-energy electron-photon and photon-photon interactions in the extreme environment provided by an intense laser focus. The physics background and its relevance are presented in the science case which in turn leads to, and justifies, the ensuing plan for all aspects of the experiment: Our choice of experimental parameters allows (i) field strengths to be probed where the coupling to charges becomes non-perturbative and (ii) a precision to be achieved that permits a detailed comparison of the measured data with calculations. In addition, the high photon flux predicted will enable a sensitive search for new physics beyond the Standard Model. The initial phase of the experiment will employ an existing 40 TW laser, whereas the second phase will utilise an upgraded laser power of 350 TW. All expectations regarding the performance of the experimental set-up as well as the expected physics results are based on detailed numerical simulations throughout.
  •  
3.
  • Borsato, M., et al. (författare)
  • Unleashing the full power of LHCb to probe stealth new physics
  • 2022
  • Ingår i: Reports on Progress in Physics. - : IOP Publishing. - 0034-4885 .- 1361-6633. ; 85:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.
  •  
4.
  • Bai, Z., et al. (författare)
  • New physics searches with an optical dump at LUXE
  • 2022
  • Ingår i: Physical Review D. - 2470-0010. ; 106:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a novel way to search for feebly interacting massive particles, exploiting two properties of systems involving collisions between high energy electrons and intense laser pulses. The first property is that the electron-laser collision results in a large flux of hard photons, as the laser behaves effectively as a thick medium. The second property is that the emitted photons free-stream inside the laser and thus for them the laser behaves effectively as a very thin medium. Combining these two features implies that the electron-intense-laser collision is an apparatus, which can efficiently convert O(10 GeV) electrons to a large flux of hard, collinear photons. The photons are directed onto a solid dump in which feebly interacting massive particles may be produced. With the much smaller backgrounds induced by the photon beam compared to those expected in electron- or proton-beam dump experiments and combined with a relatively shorter dump used here, the sensitivity to short lifetimes is unparalleled. We denote this novel apparatus as "optical dump"or NPOD (new physics search with optical dump). The proposed LUXE experiment at the European XFEL has all the basic required ingredients to realize this experimental concept for the first time. Moreover, the NPOD extension of LUXE is essentially parasitic to the main experiment and thus, practically it does not have any bearing on its main program. We discuss how the NPOD concept can be realized in practice by adding a detector after the last physical dump of the experiment to reconstruct the two-photon decay of a new spin-0 particle. We show that even with a relatively short dump, the search can still be background-free. Remarkably, even with a few days of data taking with a 40 TW laser corresponding to its initial run, LUXE-NPOD will be able to probe an uncharted territory of models with pseudoscalars and scalars. Furthermore, with a 350 TW laser of the main run, LUXE-NPOD will have a unique reach for these models. In particular it can probe natural scalar theories for masses above 100 MeV. We note that the new NPOD concept may be ported to other existing or future facilities worldwide, including, e.g., future lepton colliders.
  •  
5.
  • Graham, N. S. N., et al. (författare)
  • Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:613
  • Tidskriftsartikel (refereegranskat)abstract
    • Axonal injury is a key determinant of long-term outcomes after traumatic brain injury (TBI) but has been difficult to measure clinically. Fluid biomarker assays can now sensitively quantify neuronal proteins in blood. Axonal components such as neurofilament light (NfL) potentially provide a diagnostic measure of injury. In the multicenter BIO-AX-TBI study of moderate-severe TBI, we investigated relationships between fluid biomarkers, advanced neuroimaging, and clinical outcomes. Cerebral microdialysis was used to assess biomarker concentrations in brain extracellular fluid aligned with plasma measurement. An experimental injury model was used to validate biomarkers against histopathology. Plasma NfL increased after TBI, peaking at 10 days to 6 weeks but remaining abnormal at 1 year. Concentrations were around 10 times higher early after TBI than in controls (patients with extracranial injuries). NfL concentrations correlated with diffusion MRI measures of axonal injury and predicted white matter neurodegeneration. Plasma TAU predicted early gray matter atrophy. NfL was the strongest predictor of functional outcomes at 1 year. Cerebral microdialysis showed that NfL concentrations in plasma and brain extracellular fluid were highly correlated. An experimental injury model confirmed a dose-response relationship of histopathologically defined axonal injury to plasma NfL. In conclusion, plasma NfL provides a sensitive and clinically meaningful measure of axonal injury produced by TBI. This reflects the extent of underlying damage, validated using advanced MRI, cerebral microdialysis, and an experimental model. The results support the incorporation of NfL sampling subacutely after injury into clinical practice to assist with the diagnosis of axonal injury and to improve prognostication.
  •  
6.
  • Lissek, T, et al. (författare)
  • Building Bridges through Science
  • 2017
  • Ingår i: Neuron. - : Elsevier BV. - 1097-4199 .- 0896-6273. ; 96:4, s. 730-735
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy