SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sotomayor Torres Clivia M.) "

Sökning: WFRF:(Sotomayor Torres Clivia M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fu, Yifeng, 1984, et al. (författare)
  • Graphene related materials for thermal management
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Almost 15 years have gone ever since the discovery of graphene as a single atom layer. Numerous papers have been published to demonstrate its high electron mobility, excellent thermal and mechanical as well as optical properties. We have recently seen more and more applications towards using graphene in commercial products. This paper is an attempt to review and summarize the current status of the research of the thermal properties of graphene and other 2D based materials including the manufacturing and characterization techniques and their applications, especially in electronics and power modules. It is obvious from the review that graphene has penetrated the market and gets more and more applications in commercial electronics thermal management context. In the paper, we also made a critical analysis of how mature the manufacturing processes are; what are the accuracies and challenges with the various characterization techniques and what are the remaining questions and issues left before we see further more applications in this exciting and fascinating field.
  •  
2.
  • Högström, Herman, 1975- (författare)
  • Optical Studies of Periodic Microstructures in Polar Materials
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The optical properties of matter are determined by the coupling of the incident electromagnetic radiation to oscillators within the material. The oscillators can be electrons, ions or molecules. Close to a resonance the dielectric function exhibits strong dispersion and may be negative. A negative dielectric function gives rise to a complex wave vector which is associated with no allowed states for photons, i.e. high extinction and bulk reflectance, as well as the possibility to support surface waves. It is possible to manufacture a dielectric material that generates a complex wave vector. Such materials are called photonic crystals and they may exhibit a frequency range without allowed states for photons, i.e. an energy gap. A photonic crystal has a periodically varying dielectric function and the lattice constant is of the same order of magnitude as the wavelengths of the gap. In this thesis, two optical phenomena causing a complex wave vector are combined. Polar materials, which have lattice resonance in the thermal infrared causing strong dispersion, are studied in combination with a periodic structure. The periodicity introduced is achieved using another material, but also by structuring of the polar material. One, two and three dimensional structures are considered. The polar materials used are silicon dioxide and silicon carbide. It is shown, both by calculations and experiments that the two optical phenomena can co-exist and interact, both constructively and destructively. A possible application for the combination of the two phenomena is discussed: Selective emittance in the thermal infrared. It is also shown that a polar material can be periodically structured by a focused ion beam in such way that it excites surface waves.
  •  
3.
  • Jaramillo-Fernandez, Juliana, et al. (författare)
  • Thermal conductivity of epitaxially grown InP : experiment and simulation
  • 2017
  • Ingår i: CrystEngComm. - : ROYAL SOC CHEMISTRY. - 1466-8033 .- 1466-8033. ; 19:14, s. 1879-1887
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration of III-V optoelectronic devices on silicon is confronted with the challenge of heat dissipation for reliable and stable operation. A thorough understanding and characterization of thermal transport is paramount for improved designs of, for example, viable III-V light sources on silicon. In this work, the thermal conductivity of heteroepitaxial laterally overgrown InP layers on silicon is experimentally investigated using microRaman thermometry. By examining InP mesa-like structures grown from trenches defined by a SiO2 mask, we found that the thermal conductivity decreases by about one third, compared to the bulk thermal conductivity of InP, with decreasing width from 400 to 250 nm. The high thermal conductivity of InP grown from 400 nm trenches was attributed to the lower defect density as the InP micro crystal becomes thicker. In this case, the thermal transport is dominated by phonon-phonon interactions as in a low defect-density monocrystalline bulk material, whereas for thinner InP layers grown from narrower trenches, the heat transfer is dominated by phonon scattering at the extended defects and InP/SiO2 interface. In addition to the nominally undoped sample, sulfur-doped (1 x 10(18) cm(-3)) InP grown on Si was also studied. For the narrower doped InP microcrystals, the thermal conductivity decreased by a factor of two compared to the bulk value. Sources of errors in the thermal conductivity measurements are discussed. The experimental temperature rise was successfully simulated by the heat diffusion equation using the FEM.
  •  
4.
  • Jaramillo-Fernandez, Juliana, et al. (författare)
  • Tuning of heat transport across thin films of polycrystalline AlN via multiscale structural defects
  • 2015
  • Ingår i: ECS Transactions. - : Electrochemical Society. - 1938-5862 .- 1938-6737. - 9781607685395 ; , s. 53-64
  • Konferensbidrag (refereegranskat)abstract
    • The effective thermal conductivity of nanocrystalline films of AlN with inhomogeneous microstructure is investigated experimentally and theoretically. This is done by measuring the thermal conductivity of the samples with the 3-omega method and characterizing their microstructure by means of electron microscopy. The relative effect of the microstructure and the interface thermal resistance on the thermal conductivity is quantified through an analytical model. Thermal measurements showed that when the thickness of an AlN film is reduced from 1460 to 270 nm, its effective thermal conductivity decreases from 8.21 to 3.12 WYm-1?K-1, which is two orders of magnitude smaller than its bulk counterpart value. It is shown that both the size effects of the phonon mean free paths and the intrinsic thermal resistance resulting from the inhomogeneous microstructure predominate for thicker films, while the contribution of the interface thermal resistance strengthens as the film thickness is scaled down. The obtained results demonstrate that the structural inhomogeneity in polycrystalline AlN films can be efficiently used to tune their cross- plane thermal conductivity. In addition, thermal conductivity measurements of epitaxially grown InP layers on silicon using Raman spectroscopy are reported.
  •  
5.
  • Naureen, Shagufta (författare)
  • Top-down Fabrication Technologies for High Quality III-V Nanostructures
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • III-V nanostructures have attracted substantial research effort due to their interesting physical properties and their applications in new generation of ultrafast and high efficiency nanoscale electronic and photonic components. The advances in nanofabrication methods including growth/synthesis have opened up new possibilities of realizing one dimensional (1D) nanostructures as building blocks of future nanoscale devices. For processing of semiconductor nanostructure devices, simplicity, cost effectiveness, and device efficiency are key factors. A number of methods are being pursued to fabricate high quality III-V nanopillar/nanowires, quantum dots and nano disks. Further, high optical quality nanostructures in these materials together with precise control of shapes, sizes and array geometries make them attractive for a wide range of optoelectronic/photonic devices.This thesis work is focused on top-down approaches for fabrication of high optical quality nanostructures in III-V materials. Dense and uniform arrays of nanopillars are fabricated by dry etching using self-assembly of colloidal SiO2 particles for masking. The physico-chemistry of etching and the effect of etch-mask parameters are investigated to control the shape, aspect ratios and spatial coverage of the nanopillar arrays. The optimization of etch parameters and the utilization of erosion of etch masks is evaluated to obtain desired pillar shapes from cylindrical to conical. Using this fabrication method, high quality nanopillar arrays were realized in several InP-based and GaAs-based structures, including quantum wells and multilayer heterostructures. Optical properties of these pillars are investigated using different optical spectroscopic techniques. These nanopillars, single and in arrays, show excellent photoluminescence (PL) at room temperature and the measured PL line-widths are comparable to the as-grown wafer, indicating the high quality of the fabricated nanostructures. The substrate-free InP nanopillars have carrier life times similar to reference epitaxial layers, yet an another indicator of high material quality. InGaAs layer, beneath the pillars is shown to provide several useful functions. It effectively blocks the PL from the InP substrate, serves as a sacrificial layer for generation of free pillars, and as a “detector” in cathodoluminescence (CL) measurements. Diffusion lengths independently determined by time resolved photoluminescence (TRPL) and CL measurements are consistent, and carrier feeding to low bandgap InGaAs layer is evidenced by CL data. Total reflectivity measurements show that nanopillar arrays provide broadband antireflection making them good candidates for photovoltaic applications.  A novel post etch, sulfur-oleylamine (S-OA) based chemical process is developed to etch III-V materials with monolayer precision, in an inverse epitaxial manner along with simultaneous surface passivation. The process is applied to push the limits of top-down fabrication and InP-based high optical quality nanowires with aspect ratios more than 50, and nanostructures with new topologies (nanowire meshes and in-plane wires) are demonstrated.  The optimized process technique is used to fabricate nanopillars in InP-based multilayers (InP/InGaAsP/InP and InP/InGaAs/InP). Such multilayer nanopillars are not only attractive for broad-band absorption in solar cells, but are also ideal to generate high optical quality nanodisks of these materials. Finally, the utility of a soft stamping technique to transfer free nanopillars/wires and nanodisks onto Si substrate is demonstrated. These nanostructures transferred onto Si with controlled densities, from low to high, could provide a new route for material integration on Si.
  •  
6.
  • Sotomayor-Torres, Clivia M., 1955-, et al. (författare)
  • Raman thermometry analysis: Modelling assumptions revisited
  • 2017
  • Ingår i: Applied Thermal Engineering. - : Elsevier. - 1359-4311 .- 1873-5606. ; 130, s. 1175-1181
  • Tidskriftsartikel (refereegranskat)abstract
    • In Raman thermometry, several assumptions are made to model the heat conduction and to extract the thermal conductivity of the samples from the measured data. In this work, the heat conduction in bulk and mesa-like samples was investigated by numerical simulation and measured by the temperature-induced Raman shift method, to study the range of applicability of these assumptions. The effects of light penetration depth and finite sample size on the accuracy of the thermal conductivity determination were investigated by comparing the results of the finite element method with the usual analytical approximation for bulk samples. We found that the assumptions used in the analytical model can be applied to extract the thermal conductivity in solids if the following conditions are fulfilled: the ratio of light penetration depth to laser spot radius is smaller than 0.5, the ratio of spot radius to sample thickness is smaller than 0.1, and the ratio of spot radius to sample half width is smaller than 0.01.
  •  
7.
  • Visser, Dennis, et al. (författare)
  • Ion bombardment induced formation of self-organized wafer-scale GaInP nanopillar assemblies
  • 2020
  • Ingår i: Journal of Vacuum Science and Technology B. - : AVS Science and Technology Society. - 2166-2746 .- 2166-2754. ; 38:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion sputtering assisted formation of nanopillars is demonstrated as a wafer-scale, lithography-free fabrication method to obtain high optical quality gallium indium phosphide (GaInP) nanopillars. Compared to binary materials, little has been reported on the formation of self-organized ternary nanostructures. Epitaxial (100) Ga0.51In0.49P layers lattice matched to GaAs were sputtered by nitrogen (N2) ions with relatively low ion beam energies (∼400 eV) to reduce ion bombardment induced damage. The influence of process parameters such as temperature, sputter duration, ion beam energy, and ion beam incidence angle on the pillar formation is investigated. The fabricated GaInP nanopillars have average diameters of ∼75-100 nm, height of ∼220 nm, and average density of ∼2-4 × 108 pillars/cm2. The authors show that the ion beam incidence angle plays an important role in pillar formation and can be used to tune the pillar shape, diameter, and spatial density. Specifically, tapered to near cylindrical pillar profiles together with a reduction in their average diameters are obtained by varying the ion beam incidence angle from 0° to 20°. A tentative model for the GaInP nanopillar formation is proposed based on transmission electron microscopy and chemical mapping analysis. μ-Photoluminescence and μ-Raman measurements indicate a high optical quality of the c-GaInP nanopillars.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy