SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sougrati Moulay Tahar) "

Sökning: WFRF:(Sougrati Moulay Tahar)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Difi, Siham, et al. (författare)
  • Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)(3)/C Composite as Electrode Material for Na-Ion Batteries
  • 2015
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 119:45, s. 25220-25234
  • Tidskriftsartikel (refereegranskat)abstract
    • The properties, insertion mechanisms, and electrochemical performances of the Na1.5Fe0.5Ti1.5(PO4)(3)/C composite as electrode material for Na-ion batteries are reported. The composite was obtained by solid-state reaction and consists of porous secondary particles of submicron-sized particles coated by carbon. Detailed characterizations were performed by combining theoretical and experimental tools. This includes the determination of the crystal structure of Na1.5Fe0.5Ti1.5(PO4)(3) from both first-principles calculations and X-ray diffraction providing Na distribution over M1 and M2 interstitial sites, which is of importance for ionic conductivity. Na1.5Fe0.5Ti1.5(PO4)(3)/C was used as an electrode material at 2.2 V versus Na+/Na-0, exhibiting good Na-storage ability with a specific capacity of 125 mAh g(-1), close to the theoretical value, for the first discharge at C/10, good capacity retention, and Coulombic efficiency of 95% and 99.5% at the 60th cycle, respectively, and high power rate with a decrease of the specific capacity of only 14% from C/10 to 2C. These good performances have been related to the morphology of the composite and substitution of Fe for Ti, leading to an insertion mechanism that differs from that of NaTi2(PO4)(3). This mechanism was quantitatively analyzed from operand Fe-57 Mossbauer spectroscopy used for the first time in both galvanostatic and GITT modes.
  •  
2.
  • Difi, Siham, et al. (författare)
  • Role of iron in Na1.5Fe0.5Ti1.5(PO4)(3)/C as electrode material for Na-ion batteries studied by operando Mossbauer spectroscopy
  • 2016
  • Ingår i: Hyperfine Interactions. - : Springer Science and Business Media LLC. - 0304-3843 .- 1572-9540.
  • Konferensbidrag (refereegranskat)abstract
    • The role of iron in Na1.5Fe0.5Ti1.5(PO4)(3)/C electrode material for Na batteries has been studied by Fe-57 Mossbauer spectroscopy in operando mode. The potential profile obtained in the galvanostatic regime shows three plateaus at different voltages due to different reaction mechanisms. Two of them, at 2.2 and 0.3 V vs Na+/Na-0, have been associated to redox processes involving iron and titanium in Na1.5Fe0.5Ti1.5(PO4)(3). The role of titanium was previously elucidated for NaTi2(PO4)(3) and the effect of the substitution of Fe for Ti was investigated with 57Fe Mossbauer spectroscopy. We show that iron is an electrochemically active center at 2.2 V with the reversible Fe3+/Fe2+ transformation and then remains at the oxidation state Fe2+ along the sodiation until the end of discharge at 0 V.
  •  
3.
  • Le Pham, Phuong Nam, et al. (författare)
  • Prussian blue analogues for potassium-ion batteries: insights into the electrochemical mechanisms
  • 2023
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 11:6, s. 3091-3104
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive description of the electrochemical mechanisms of the Prussian Blue Analogue (PBA) K1.67Mn0.65Fe0.35[Fe(CN)6]0.92·0.45H2O is obtained by combining several complementary ex situ and operando physico-chemical characterisation techniques. This particular PBA, which shows very good electrochemical performance as a cathode material in potassium-ion batteries (PIBs), undergoes three successive redox reactions during the (de-)potassiation that are hereby identified by ex situ57Fe Mössbauer spectroscopy and operando Mn and Fe K-edge X-ray absorption spectroscopy. These reactions come along with notable modifications of the crystal structure, which are followed in real time by operando X-ray diffraction. The correlation of these results, interpreted with the support of chemometric methods, also reveals the limitations of this PBA, probably related to the deactivation of the Mn undergoing extensive reversible Jahn-Teller distortion during cycling as well as possible dissolution in the electrolyte. These results underline that optimisation of the chemical composition of PBAs is a crucial step towards the preparation of reliable and stable PBA-based cathodes for PIBs.
  •  
4.
  •  
5.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy