SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soust Verdaguer B.) "

Sökning: WFRF:(Soust Verdaguer B.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Frischknecht, R., et al. (författare)
  • Comparison of the environmental assessment of an identical office building with national methods
  • 2019
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; , s. 012037-
  • Konferensbidrag (refereegranskat)abstract
    • The IEA EBC Annex 72 focuses on the assessment of the primary energy demand, greenhouse gas emissions and environmental impacts of buildings during production, construction, use (including repair and replacement) and end of life (dismantling), i.e. during the entire life cycle of buildings. In one of its activities, reference buildings (size, materialisation, operational energy demand, etc.) were defined on which the existing national assessment methods are applied using national (if available) databases and (national/regional) approaches. The "be2226" office building in Lustenau, Austria was selected as one of the reference buildings. TU Graz established a BIM model and quantified the amount of building elements as well as construction materials required and the operational energy demand. The building assessment was carried out using the same material and energy demand but applying the LCA approach used in the different countries represented by the participating Annex experts. The results of these assessments are compared in view of identifying major discrepancies. Preliminary findings show that the greenhouse gas emissions per kg of building material differ up to a factor of two and more. Major differences in the building assessments are observed in the transports to the construction site (imports) and the construction activities as well as in the greenhouse gas emissions of the operational energy demand (electricity). The experts document their practical difficulties and how they overcame them. The results of this activity are used to better target harmonisation efforts.
  •  
2.
  • Frischknecht, R., et al. (författare)
  • Comparison of the greenhouse gas emissions of a high-rise residential building assessed with different national LCA approaches - IEA EBC Annex 72
  • 2020
  • Ingår i: IOP Conference Series. - : IOP Publishing. ; , s. 022029-
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: The international research project IEA EBC Annex 72 investigates the life cycle related environmental impacts caused by buildings. The project aims inter alia to harmonise LCA approaches on buildings. Methods: To identify major commonalities and discrepancies among national LCA approaches, reference buildings were defined to present and compare the national approaches. A residential high-rise building located in Tianjin, China, was selected as one of the reference buildings. The main construction elements are reinforced concrete shear walls, beams and floor slabs. The building has an energy reference area of 4566 m2 and an operational heating energy demand of 250 MJ/m2a. An expert team provided information on the quantities of building materials and elements required for the construction, established a BIM model and quantified the operational energy demand. Results: The greenhouse gas emissions and environmental impacts of the building were quantified using 17 country-specific national assessment methods and LCA databases. Comparisons of the results are shown on the level of building elements as well as the complete life cycle of the building. Conclusions: The results of these assessments show that the main differences lie in the LCA background data used, the scope of the assessment and the reference study period applied. Despite the variability in the greenhouse gas emissions determined with the 17 national methods, the individual results are relevant in the respective national context of the method, data, tool and benchmark used. It is important that environmental benchmarks correspond to the particular LCA approach and database of a country in which the benchmark is applied. Furthermore, the results imply to include building technologies as their contribution to the overall environmental impacts is not negligible. Grant support: The authors thank the IEA for its organizational support and the funding organizations in the participating countries for their financial support.
  •  
3.
  • Soust-Verdaguer, B., et al. (författare)
  • Implications of using systematic decomposition structures to organize building LCA information: A comparative analysis of national standards and guidelines- IEA EBC ANNEX 72
  • 2020
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 588:2
  • Konferensbidrag (refereegranskat)abstract
    • Introduction: The application of the Life Cycle Assessment (LCA) technique to a building requires the collection and organization of a large amount of data over its life cycle. The systematic decomposition method can be used to classify building components, elements and materials, overcome specific difficulties that are encountered when attempting to complete the life cycle inventory and increase the reliability and transparency of results. In this paper, which was developed in the context of the research project IEA EBC Annex 72, we demonstrate the implications of taking such approach and describe the results of a comparison among different national standards/guidelines that are used to conduct LCA for building decomposition. Methods: We initially identified the main characteristics of the standards/guidelines used by Annex participant countries. The “be2226” reference office building was used as a reference to apply the different national standards/guidelines related to building decomposition. It served as a basis of comparison, allowing us to identify the implications of using different systems/standards in the LCA practice, in terms of how these differences affect the LCI structures, LCA databases and the methods used to communicate results. We also analyzed the implications of integrating these standards/guidelines into Building Information Modelling (BIM) to support LCA. Results: Twelve national classification systems/ standards/guidelines for the building decomposition were compared. Differences were identified among the levels of decomposition and grouping principles, as well as the consequences of these differences that were related to the LCI organization. In addition, differences were observed among the LCA databases and the structures of the results. Conclusions: The findings of this study summarize and provide an overview of the most relevant aspects of using a standardized building decomposition structure to conduct LCA. Recommendations are formulated on the basis of these findings.
  •  
4.
  • di Bari, R., et al. (författare)
  • Buildings LCA and digitalization: Designers' toolbox based on a survey
  • 2022
  • Ingår i: IOP Conference Series: Earth and Environmental Science. - : IOP Publishing. - 1755-1307 .- 1755-1315. ; 1078:1
  • Konferensbidrag (refereegranskat)abstract
    • In a context of digitalization and increasing quality requirements, the building sector is facing an increasing level of complexity regarding its design process. This results in a growing number of involved actors from different domains, a multitude of tasks to be completed and a higher degree of needed expertise. New buildings are also required to reach higher performances in terms of environmental quality. To that regard, the exploitation of the full potential of digital tools can facilitate the integration of environmental aspects in the planning process, limit productivity shortcomings and reduce environmental impacts, which can result from an unaware decision making. Building environmental assessment can be performed through several Life Cycle Assessment (LCA)-based tools. “Pure calculation” tools quantify final buildings' environmental potential, while “complex tools” additionally support decision making during the planning process. It is often difficult to choose the best suitable tool, which strongly depends on the user's needs. Within the IEA EBC Annex 72, a survey was realized with the main objective of creating a comprehensive overview of the existing tools dedicated to buildings LCA. The questionnaire included the usability, functionality, compliance, data reliability and interoperability of the analysed tools. Lastly, based on the survey outcomes and their critical assessment, a procedure for the identification and selection of a tool has been proposed based on user's needs. As a result, this work outlines main features of currently available building LCA tools, for which there is a harmonized status in terms of usability and overall applied LCA methodology. Despite the need for more automatized workflows, tools' embedding is mostly not yet applicable in system chains or limited to a restricted number of tools.
  •  
5.
  • Hollberg, Alexander, 1985, et al. (författare)
  • Review of visualising LCA results in the design process of buildings
  • 2021
  • Ingår i: Building and Environment. - : Elsevier BV. - 0360-1323. ; 190
  • Forskningsöversikt (refereegranskat)abstract
    • Life Cycle Assessment (LCA) is increasingly used for decision-making in the design process of buildings and neighbourhoods. Therefore, visualisation of LCA results to support interpretation and decision-making becomes more important. The number of building LCA tools and the published literature has increased substantially in recent years. Most of them include some type of visualisation. However, there are currently no clear guidelines and no harmonised way of presenting LCA results. In this paper, we review the current state of the art in visualising LCA results to provide a structured overview. Furthermore, we discuss recent and potential future developments. The review results show a great variety in visualisation options. By matching them with common LCA goals we provide a structured basis for future developments. Case studies combining different kinds of visualisations within the design environment, interactive dashboards, and immersive technologies, such as virtual reality, show a big potential for facilitating the interpretation of LCA results and collaborative design processes. The overview and recommendations presented in this paper provide a basis for future development of intuitive and design-integrated visualisation of LCA results to support decision-making.
  •  
6.
  • Llatas, C., et al. (författare)
  • BIM-based LCSA application in early design stages using IFC
  • 2022
  • Ingår i: Automation in Construction. - : Elsevier BV. - 0926-5805. ; 138
  • Tidskriftsartikel (refereegranskat)abstract
    • Life Cycle Sustainability Assessment (LCSA) is an integrated method that combines environmental, economic, and social assessments. Its methodological development remains under discussion, mainly regarding the building design. This paper aims to provide a systematic, interoperable, and open-source approach towards implementing LCSA in Building Information Modelling (BIM) in five steps. A harmonized data structure that enriches BIM objects is proposed. Automation in the principal evaluation step is provided by integrating new parameters into the current Industry Foundation Classes (IFC4). A Dynamo script verifies its utility in a case study in Spain using real-time calculations and visualizations. Two alternative structural systems are assessed, and identification is made of the lowest CO2 emitter, the lowest cost, and the most beneficial system for local employment. The approach can be employed to evaluate other indicators and building systems in other countries. Challenges and limitations in the standardization and harmonization of the three dimensions are identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy