SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Southern M) "

Sökning: WFRF:(Southern M)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdesselam, A., et al. (författare)
  • Engineering for the ATLAS SemiConductor Tracker (SCT) end-cap
  • 2008
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATLAS SemiConductor Tracker (SCT) is a silicon-strip tracking detector which forms part of the ATLAS inner detector. The SCT is designed to track charged particles produced in proton-proton collisions at the Large Hadron Collider (LHC) at CERN at an energy of 14 TeV. The tracker is made up of a central barrel and two identical end-caps. The barrel contains 2112 silicon modules, while each end-cap contains 988 modules. The overall tracking performance depends not only on the intrinsic measurement precision of the modules but also on the characteristics of the whole assembly, in particular, the stability and the total material budget. This paper describes the engineering design and construction of the SCT end-caps, which are required to support mechanically the silicon modules, supply services to them and provide a suitable environment within the inner detector. Critical engineering choices are highlighted and innovative solutions are presented - these will be of interest to other builders of large-scale tracking detectors. The SCT end-caps will be fully connected at the start of 2008. Further commissioning will continue, to be ready for proton-proton collision data in 2008.
  •  
2.
  • Pfaller, M.A., et al. (författare)
  • Twelve years of fluconazole in clinical practice : Global-trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida
  • 2004
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier BV. - 1198-743X .- 1469-0691. ; 10:SUPPL. 1, s. 11-23
  • Tidskriftsartikel (refereegranskat)abstract
    • We determined the species distribution and in-vitro susceptibility of 6082 bloodstream infection (BSI) isolates of Candida spp. collected from 250 medical centres in 32 nations over a 10-year period from 1992 through 2001. The species included 3401 C. albicans, 984 C. glabrata, 796 C. parapsilosis, 585 C. tropicalis, 153 C. krusei, 67 C. lusitaniae, 48 C. guilliermondii, 10 C. famata, 10 C. kefyr, six C. pelliculosa, five C. rugosa, four C. lipolytica, three C. dubliniensis, three C. inconspicua, two C. sake and one isolate each of C. lambica, C. norvegensis and C. zeylanoides. Minimum inhibitory concentration determinations were made using the National Committee for Clinical Laboratory Standards reference broth microdilution method. Variation in the rank order and frequency of the different species of Candida was observed over time and by geographic area. The proportion of BSI due to C. albicans and C. glabrata increased and C. parapsilosis decreased over time in Canada, the USA and Europe. C. glabrata was an infrequent cause of BSI in Latin America and the Asia-Pacific region. Very little variation in fluconazole susceptibility was observed among isolates of C. albicans, C. tropicalis and C. parapsilosis. These species accounted for 78% of all BSI and remained highly susceptible (91-100% susceptible) to fluconazole from 1992 to 2001 irrespective of geographic origin. The prevalence of fluconazole resistance among C. glabrata isolates was variable both over time and among the various countries and regions. Resistance to fluconazole among C. glabrata isolates was greatest in the USA and varied by US census region (range 0-23%). These observations are generally encouraging relative to the sustained usefulness of fluconazole as a systemically active antifungal agent for the treatment of candida BSI. © 2004 Copyright by the European Society of Clinical Microbiology and Infectious Diseases.
  •  
3.
  • Pettersson-Klein, A. T., et al. (författare)
  • Small molecule PGC-1 alpha 1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration
  • 2018
  • Ingår i: Molecular metabolism. - : Elsevier BV. - 2212-8778. ; 9, s. 28-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The peroxisome proliferator-activated receptor-gamma coactivator-1 alpha 1 (PGC-1 alpha 1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1 alpha 1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1 alpha 1 activators could be valuable tools in the fight against obesity and metabolic disease. Finding such compounds has been challenging partly because PGC-1 alpha 1 is a transcriptional coactivator with no known ligand-binding properties. While, PGC-1 alpha 1 activation is regulated by several mechanisms, protein stabilization is a crucial limiting step due to its short half-life under unstimulated conditions.Methods: We designed a cell-based high-throughput screening system to identify PGC-1 alpha 1 protein stabilizers. Positive hits were tested for their ability to induce endogenous PGC-1 alpha 1 protein accumulation and activate target gene expression in brown adipocytes. Select compounds were analyzed for their effects on global gene expression and cellular respiration in adipocytes.Results: Among 7,040 compounds screened, we highlight four small molecules with high activity as measured by: PGC-1 alpha 1 protein accumulation, target gene expression, and uncoupled mitochondrial respiration in brown adipocytes.Conclusions: We identify compounds that induce PGC-1 alpha 1 protein accumulation and show that this increases uncoupled respiration in brown adipocytes. This screening platform establishes the foundation for a new class of therapeutics with potential use in obesity and associated disorders.
  •  
4.
  •  
5.
  • Serrano, L. M., et al. (författare)
  • A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:6, s. 736-750
  • Tidskriftsartikel (refereegranskat)abstract
    • It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario.
  •  
6.
  •  
7.
  • Bender, P., et al. (författare)
  • Influence of clustering on the magnetic properties and hyperthermia performance of iron oxide nanoparticles
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Clustering of magnetic nanoparticles can drastically change their collective magnetic properties, which in turn may influence their performance in technological or biomedical applications. Here, we investigate a commercial colloidal dispersion (FeraSpin™R), which contains dense clusters of iron oxide cores (mean size around 9 nm according to neutron diffraction) with varying cluster size (about 18-56 nm according to small angle x-ray diffraction), and its individual size fractions (FeraSpin™XS, S, M, L, XL, XXL). The magnetic properties of the colloids were characterized by isothermal magnetization, as well as frequency-dependent optomagnetic and AC susceptibility measurements. From these measurements we derive the underlying moment and relaxation frequency distributions, respectively. Analysis of the distributions shows that the clustering of the initially superparamagnetic cores leads to remanent magnetic moments within the large clusters. At frequencies below 105 rad s-1, the relaxation of the clusters is dominated by Brownian (rotation) relaxation. At higher frequencies, where Brownian relaxation is inhibited due to viscous friction, the clusters still show an appreciable magnetic relaxation due to internal moment relaxation within the clusters. As a result of the internal moment relaxation, the colloids with the large clusters (FS-L, XL, XXL) excel in magnetic hyperthermia experiments.
  •  
8.
  •  
9.
  • Kevei, Eva, et al. (författare)
  • Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 140:3, s. 933-45
  • Tidskriftsartikel (refereegranskat)abstract
    • The circadian system of Arabidopsis (Arabidopsis thaliana) includes feedback loops of gene regulation that generate 24-h oscillations. Components of these loops remain to be identified; none of the known components is completely understood, including ZEITLUPE (ZTL), a gene implicated in regulated protein degradation. ztl mutations affect both circadian and developmental responses to red light, possibly through ZTL interaction with PHYTOCHROME B (PHYB). We conducted a large-scale genetic screen that identified additional clock-affecting loci. Other mutants recovered include 11 new ztl alleles encompassing mutations in each of the ZTL protein domains. Each mutation lengthened the circadian period, even in dark-grown seedlings entrained to temperature cycles. A mutation of the LIGHT, OXYGEN, VOLTAGE (LOV)/Period-ARNT-Sim (PAS) domain was unique in retaining wild-type responses to red light both for the circadian period and for control of hypocotyl elongation. This uncoupling of ztl phenotypes indicates that interactions of ZTL protein with multiple factors must be disrupted to generate the full ztl mutant phenotype. Protein interaction assays showed that the ztl mutant phenotypes were not fully explained by impaired interactions with previously described partner proteins Arabidopsis S-phase kinase-related protein 1, TIMING OF CAB EXPRESSION 1, and PHYB. Interaction with PHYB was unaffected by mutation of any ZTL domain. Mutation of the kelch repeat domain affected protein binding at both the LOV/PAS and the F-box domains, indicating that interaction among ZTL domains leads to the strong phenotypes of kelch mutations. Forward genetics continues to provide insight regarding both known and newly discovered components of the circadian system, although current approaches have saturated mutations at some loci.
  •  
10.
  • Bender, P., et al. (författare)
  • Relating Magnetic Properties and High Hyperthermia Performance of Iron Oxide Nanoflowers
  • 2018
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 122:5, s. 3068-3077
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Néel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, magnetic hyperthermia performance) of the nanoflowers measured in colloidal dispersion at high frequency is comparatively large and independent of the viscosity of the surrounding medium. This concurs with our assumption that the observed relaxation in the high frequency range is primarily a result of internal spin relaxation, and possibly connected to the disordered spins within the individual nanoflowers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy