SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Southon John R.) "

Sökning: WFRF:(Southon John R.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sparrow, Katy J., et al. (författare)
  • Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
  • 2018
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 4:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived fromancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost andmethane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 +/- 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon-sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.
  •  
2.
  • Vonk, Jorien E., et al. (författare)
  • Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds
  • 2019
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 244, s. 502-521
  • Tidskriftsartikel (refereegranskat)abstract
    • Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here, we examine down-core C-14 profiles of higher plant leaf wax-derived fatty acids isolated from high fidelity sedimentary sequences spanning the so-called bomb-spike, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (residence times). Using a modeling framework, we find that, in addition to a young (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (+/- 9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (+/- 5.0) and 2.4 (+/- 0.50) to 3.2 (+/- 0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The young pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.
  •  
3.
  •  
4.
  • Reimer, Paula J., et al. (författare)
  • The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP)
  • 2020
  • Ingår i: Radiocarbon. - 0033-8222. ; 62:4, s. 725-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiocarbon (C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
  •  
5.
  • Bronk Ramsey, Christopher, et al. (författare)
  • Development of the Intcal Database
  • Ingår i: Radiocarbon. - 0033-8222.
  • Tidskriftsartikel (refereegranskat)abstract
    • The IntCal family of radiocarbon (14C) calibration curves is based on research spanning more than three decades. The IntCal group have collated the 14C and calendar age data (mostly derived from primary publications with other types of data and meta-data) and, since 2010, made them available for other sorts of analysis through an open-access database. This has ensured transparency in terms of the data used in the construction of the ratified calibration curves. As the IntCal database expands, work is underway to facilitate best practice for new data submissions, make more of the associated metadata available in a structured form, and help those wishing to process the data with programming languages such as R, Python, and MATLAB. The data and metadata are complex because of the range of different types of archives. A restructured interface, based on the "IntChron"open-access data model, includes tools which allow the data to be plotted and compared without the need for export. The intention is to include complementary information which can be used alongside the main 14C series to provide new insights into the global carbon cycle, as well as facilitating access to the data for other research applications. Overall, this work aims to streamline the generation of new calibration curves.
  •  
6.
  • Fahrni, Simon M., et al. (författare)
  • Single-Year German oak and Californian Bristlecone Pine C Data at the Beginning of the Hallstatt Plateau from 856 BC to 626 BC
  • 2020
  • Ingår i: Radiocarbon. - 0033-8222. ; 62:4, s. 919-937
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the ongoing effort to improve the Northern Hemisphere radiocarbon (C) calibration curve, this study investigates the period of 856 BC to 626 BC (2805-2575 yr BP) with a total of 403 single-year C measurements. In this age range, IntCal13 was constructed largely from German and Irish oak as well as Californian bristlecone pine C dates, with most samples measured with a 10-yr resolution. The new data presented here is the first atmospheric C single-year record of the older end of the Hallstatt plateau based on an absolutely dated tree-ring chronology. The data helped reveal a major solar proton event (SPE) which caused a spike in the production rate of cosmogenic radionuclides around 2610/2609 BP. This production event is thought to have reached a magnitude similar to the 774/775 AD production event but has remained undetected due to averaging effects in the decadal calibration data. The record leading up to the 2610/2609 BP event reveals a 11-yr solar cycle with varying cyclicity. Features of the new data and the benefits of higher resolution calibration are discussed.
  •  
7.
  • Palmer, Jonathan G., et al. (författare)
  • Changes in El Niño – Southern Oscillation (ENSO) conditions during the Greenland Stadial 1 (GS-1) chronozone revealed by New Zealand tree-rings
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 153, s. 139-155
  • Tidskriftsartikel (refereegranskat)abstract
    • The warming trend at the end of the last glacial was disrupted by rapid cooling clearly identified in Greenland (Greenland Stadial 1 or GS-1) and Europe (Younger Dryas Stadial or YD). This reversal to glacial-like conditions is one of the best known examples of abrupt change but the exact timing and global spatial extent remain uncertain. Whilst the wider Atlantic region has a network of high-resolution proxy records spanning GS-1, the Pacific Ocean suffers from a scarcity of sub-decadally resolved sequences. Here we report the results from an investigation into a tree-ring chronology from northern New Zealand aimed at addressing the paucity of data. The conifer tree species kauri (Agathis australis) is known from contemporary studies to be sensitive to regional climate changes. An analysis of a ‘historic’ 452-year kauri chronology confirms a tropical-Pacific teleconnection via the El Niño – Southern Oscillation (ENSO). We then focus our study on a 1010-year sub-fossil kauri chronology that has been precisely dated by comprehensive radiocarbon dating and contains a striking ring-width downturn between ∼12,500 and 12,380 cal BP within GS-1. Wavelet analysis shows a marked increase in ENSO-like periodicities occurring after the downturn event. Comparison to low- and mid-latitude Pacific records suggests a coherency with ENSO and Southern Hemisphere atmospheric circulation change during this period. The driver(s) for this climate event remain unclear but may be related to solar changes that subsequently led to establishment and/or increased expression of ENSO across the mid-latitudes of the Pacific, seemingly independent of the Atlantic and polar regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy