SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spötl Christoph) "

Sökning: WFRF:(Spötl Christoph)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Holm-Alwmark, Sanna, et al. (författare)
  • Shocked quartz in distal ejecta from the Ries impact event (Germany) found at ~ 180 km distance, near Bernhardzell, eastern Switzerland
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Impact ejecta formation and emplacement is of great importance when it comes to understanding the process of impact cratering and consequences of impact events in general. Here we present a multidisciplinary investigation of a distal impact ejecta layer, the Blockhorizont, that occurs near Bernhardzell in eastern Switzerland. We provide unambiguous evidence that this layer is impact-related by confirming the presence of shocked quartz grains exhibiting multiple sets of planar deformation features. Average shock pressures recorded by the quartz grains are ~ 19 GPa for the investigated sample. U–Pb dating of zircon grains from bentonites in close stratigraphic context allows us to constrain the depositional age of the Blockhorizont to ~ 14.8 Ma. This age, in combination with geochemical and paleontological analysis of ejecta particles, is consistent with deposition of this material as distal impact ejecta from the Ries impact structure, located ~ 180 km away, in Germany. Our observations are important for constraining models of impact ejecta emplacement as ballistically and non-ballistically transported fragments, derived from vastly different depths in the pre-impact target, occur together within the ejecta layer. These observations make the Ries ejecta one of the most completely preserved ejecta deposit on Earth for an impact structure of that size.
  •  
4.
  •  
5.
  • Sundqvist, Hanna S., et al. (författare)
  • Stable oxygen isotopes in a stalagmite from Jämtland, NW Sweden, record large temperature variations over the last 4000 years
  • 2010
  • Ingår i: Boreas. - : John Wiley & Sons, Inc.. - 0300-9483 .- 1502-3885. ; 39:1, s. 77-86
  • Tidskriftsartikel (refereegranskat)abstract
    •       This study of a 4000-year-old stalagmite from Korallgrottan in northwestern Sweden highlights the potentials and challenges when using stable isotopes in stalagmites as climate proxies, as well as the fact that the relationship between climate and proxy may change through time. Both the oxygen and the carbon isotopes display an overall trend of enrichment together with decreasing growth rates over the time period covered by the stalagmite, which is considered a generally cooling period according to current palaeoclimate understanding. The stable isotope records show enriched isotopic values during the, for Scandinavia, comparatively cold period AD 1300–1700 and depleted values during the warmer period AD 800–1000. The indication of a negative relationship between measured d18O and surface temperature concurs with earlier reported stalagmite records from regions with a seasonal snow cover and is further supported by the fact that the stalagmite d18 O record shows general similarities with both regional and hemispheric temperature reconstructions available for the past 500 and 2000 years, respectively. Compared with a stable isotope record of lacustrine carbonates from northern Sweden, however, shifting correlations over time between the two records indicate that a local hydrological change may have taken place at Korallgrottan, or at the lake, compared with around 1000 years ago. The earlier part of the stalagmite d18O might thus be influenced, to some extent, by another process than the later part, which means that a negative relationship between d18O and surface temperature might not hold for the entire 4000-year-old record.
  •  
6.
  • Sundqvist, Hanna, et al. (författare)
  • Stable isotopes in a stalagmite from NW Sweden documentenvironmental changes over the past 4000 years.
  • 2009
  • Ingår i: Boreas. - : Elsevier. - 0300-9483 .- 1502-3885.
  • Tidskriftsartikel (refereegranskat)abstract
    • This study of a 4000-year-old stalagmite from Korallgrottan in northwestern Sweden highlights the potentials and challenges when using stable isotopes in stalagmites as climate proxies, as well as the fact that the relationship between climate and proxy may change through time. Both the oxygen and the carbon isotopes display an overall trend of enrichment together with decreasing growth rates over the time period covered by the stalagmite, which is considered a generally cooling period according to current palaeoclimate understanding. The stable isotope records show enriched isotopic values during the, for Scandinavia, comparatively cold period AD 1300–1700 and depleted values during the warmer period AD 800–1000. The indication of a negative relationship between measured δ18O and surface temperature concurs with earlier reported stalagmite records from regions with a seasonal snow cover and is further supported by the fact that the stalagmite δ18O record shows general similarities with both regional and hemispheric temperature reconstructions available for the past 500 and 2000 years, respectively. Compared with a stable isotope record of lacustrine carbonates from northern Sweden, however, shifting correlations over time between the two records indicate that a local hydrological change may have taken place at Korallgrottan, or at the lake, compared with around 1000 years ago. The earlier part of the stalagmite δ18O might thus be influenced, to some extent, by another process than the later part, which means that a negative relationship between δ18O and surface temperature might not hold for the entire 4000-year-old record.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy