SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spalinskas Rapolas) "

Sökning: WFRF:(Spalinskas Rapolas)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anil, Anandashankar, et al. (författare)
  • HiCapTools : a software suite for probe design and proximity detection for targeted chromosome conformation capture applications
  • 2018
  • Ingår i: Bioinformatics. - : OXFORD UNIV PRESS. - 1367-4803 .- 1367-4811. ; 34:4, s. 675-677
  • Tidskriftsartikel (refereegranskat)abstract
    • Folding of eukaryotic genomes within nuclear space enables physical and functional contacts between regions that are otherwise kilobases away in sequence space. Targeted chromosome conformation capture methods (T2C, chi-C and HiCap) are capable of informing genomic contacts for a subset of regions targeted by probes. We here present HiCapTools, a software package that can design sequence capture probes for targeted chromosome capture applications and analyse sequencing output to detect proximities involving targeted fragments. Two probes are designed for each feature while avoiding repeat elements and non-unique regions. The data analysis suite processes alignment files to report genomic proximities for each feature at restriction fragment level and is isoform-aware for gene features. Statistical significance of contact frequencies is evaluated using an empirically derived background distribution. Targeted chromosome conformation capture applications are invaluable for locating target genes of disease-associated variants found by genome-wide association studies. Hence, we believe our software suite will prove to be useful for a wider user base within clinical and functional applications.
  •  
2.
  • Björn, Niclas, 1990-, et al. (författare)
  • Whole-genome sequencing and gene network modules predict gemcitabine/carboplatin-induced myelosuppression in non-small cell lung cancer patients
  • 2020
  • Ingår i: npj Systems Biology and Applications. - : Nature Publishing Group. - 2056-7189. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Gemcitabine/carboplatin chemotherapy commonly induces myelosuppression, including neutropenia, leukopenia, and thrombocytopenia. Predicting patients at risk of these adverse drug reactions (ADRs) and adjusting treatments accordingly is a long-term goal of personalized medicine. This study used whole-genome sequencing (WGS) of blood samples from 96 gemcitabine/carboplatin-treated non-small cell lung cancer (NSCLC) patients and gene network modules for predicting myelosuppression. Association of genetic variants in PLINK found 4594, 5019, and 5066 autosomal SNVs/INDELs with p ≤ 1 × 10−3 for neutropenia, leukopenia, and thrombocytopenia, respectively. Based on the SNVs/INDELs we identified the toxicity module, consisting of 215 unique overlapping genes inferred from MCODE-generated gene network modules of 350, 345, and 313 genes, respectively. These module genes showed enrichment for differentially expressed genes in rat bone marrow, human bone marrow, and human cell lines exposed to carboplatin and gemcitabine (p < 0.05). Then using 80% of the patients as training data, random LASSO reduced the number of SNVs/INDELs in the toxicity module into a feasible prediction model consisting of 62 SNVs/INDELs that accurately predict both the training and the test (remaining 20%) data with high (CTCAE 3–4) and low (CTCAE 0–1) maximal myelosuppressive toxicity completely, with the receiver-operating characteristic (ROC) area under the curve (AUC) of 100%. The present study shows how WGS, gene network modules, and random LASSO can be used to develop a feasible and tested model for predicting myelosuppressive toxicity. Although the proposed model predicts myelosuppression in this study, further evaluation in other studies is required to determine its reproducibility, usability, and clinical effect.
  •  
3.
  • Cavalli, Marco, et al. (författare)
  • A Multi-Omics Approach to Liver Diseases : Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver
  • 2020
  • Ingår i: Omics. - : Mary Ann Liebert Inc. - 1536-2310 .- 1557-8100. ; 24:4, s. 180-194
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell subpopulations. In this study, we performed snRNA-seq of a liver sample to identify subpopulations of cells based on nuclear transcriptomics. In 4282 single nuclei, we detected, on average, 1377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p < 0.05) for 7682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r = 0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidine toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We identified a complex regulatory landscape for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
  •  
4.
  • Cavalli, Marco, et al. (författare)
  • Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several Genome Wide Association Studies (GWAS) have reported variants associated to immune diseases. However, the identified variants are rarely the drivers of the associations and the molecular mechanisms behind the genetic contributions remain poorly understood. ChIP-seq data for TFs and histone modifications provide snapshots of protein-DNA interactions allowing the identification of heterozygous SNPs showing significant allele specific signals (AS-SNPs). AS-SNPs can change a TF binding site resulting in altered gene regulation and are primary candidates to explain associations observed in GWAS and expression studies. We identified 17,293 unique AS-SNPs across 7 lymphoblastoid cell lines. In this set of cell lines we interrogated 85% of common genetic variants in the population for potential regulatory effect and we identified 237 AS-SNPs associated to immune GWAS traits and 714 to gene expression in B cells. To elucidate possible regulatory mechanisms we integrated long-range 3D interactions data to identify putative target genes and motif predictions to identify TFs whose binding may be affected by AS-SNPs yielding a collection of 173 AS-SNPs associated to gene expression and 60 to B cell related traits. We present a systems strategy to find functional gene regulatory variants, the TFs that bind differentially between alleles and novel strategies to detect the regulated genes.
  •  
5.
  •  
6.
  • Cavalli, Marco, et al. (författare)
  • Single Nuclei Transcriptome Analysis of Human Liver with Integration of Proteomics and Capture Hi-C Bulk Tissue Data
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell sub-populations. In this study, we performed snRNA-seq of a liver sample to identify sub-populations of cells based on nuclear transcriptomics. In 4,282 single nuclei we detected on average 1,377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions (p<0.05) for 7,682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry (MS) proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r=0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidines toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and we investigated all known risk genes. We found a complex regulatory network for the SLC2A2 gene with 16 candidate enhancers. Three of them harbor somatic motif breaking and other mutations in HCC in the Pan Cancer Analysis of Whole Genomes dataset and are candidates to contribute to malignancy. Our results highlight the potential of a multi-omics approach in the study of human diseases.
  •  
7.
  • Chen, Liangliang, et al. (författare)
  • User-Friendly Genetic Conditional Knockout Strategies by CRISPR/Cas9
  • 2018
  • Ingår i: STEM CELLS INTERNATIONAL. - : HINDAWI LTD. - 1687-966X .- 1687-9678.
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function studies are critically important in gene functional analysis of model organisms and cells. However, conditional gene inactivation in diploid cells is difficult to achieve, as it involves laborious vector construction, multifold electroporation, and complicated genotyping. Here, a strategy is presented for generating biallelic conditional gene and DNA regulatory region knockouts in mouse embryonic stem cells by codelivery of CRISPR-Cas9 and short-homology-arm targeting vectors sequentially or simultaneously. Collectively, a simple and rapid method was presented to knock out any DNA element conditionally. This approach will facilitate the functional studies of essential genes and regulatory regions during development.
  •  
8.
  • Pradhananga, Sailendra, et al. (författare)
  • Promoter anchored interaction landscape of THP-1 macrophages captures early immune response processes
  • 2020
  • Ingår i: Cellular Immunology. - : Elsevier BV. - 0008-8749 .- 1090-2163. ; 355
  • Tidskriftsartikel (refereegranskat)abstract
    • Macrophages are highly plastic immune cells with temporally distinct transcriptome changes upon lipopolysaccride (LPS) activation. However, to what extent transcriptome reprogramming is mediated via spatial chromatin looping is not well studied. We generated high resolution chromatin interaction maps for LPS-stimulated THP-1 macrophages (0 and 2 h) using capture Hi-C. Success of LPS stimulation was validated with transcriptome sequencing. Circa 2900 genes changed their interaction profile upon LPS stimulation and those gaining interactions were enriched for LPS response relevant processes, suggesting a substantial role for distal regulation. Immune and cardiovascular risk variants were enriched within the interacting regions, thereby providing insights into macrophage biology.
  •  
9.
  • Pradhananga, Sailendra, et al. (författare)
  • The role of rare enhancer variants inbicuspid aortic valve pathology
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Bicuspid aortic valve (BAV) is a heritable congenital valve defect associated with a multitude of heart complication. BAV is a highly heritable and relatively rare disease, however in most disease cases, no coding variant can be causally linked to the disease. Given the preponderance of heritability, we sought to understand the role of non-coding rare variants in bicuspid aortic valve pathology. To this end, we generated promoters-enhancer interaction maps (HiCap), transcriptome and H3K27Ac-enhancer profiles of aortic endothelial cells derived from individuals with bicuspid or tricuspid aortic valve. Further, we sequenced the entire genome of all individuals in our study and identified the rare variants (minor allele frequency < 0.5%). Using functional and context dependent datasets, we report three-fold enrichment of non-coding rare variants in enhancer regions. Moreover, the target genes of enhancers with rare variants were relevant for valve pathology only in BAV samples. This suggests that rare non-coding variants could have significant consequences for BAV pathology
  •  
10.
  • Sahlén, Pelin, et al. (författare)
  • Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis– and psoriasis-associated genes
  • 2020
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Mosby Inc.. - 0091-6749 .- 1097-6825.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hundreds of variants associated with atopic dermatitis (AD) and psoriasis, 2 common inflammatory skin disorders, have previously been discovered through genome-wide association studies (GWASs). The majority of these variants are in noncoding regions, and their target genes remain largely unclear. Objective: We sought to understand the effects of these noncoding variants on the development of AD and psoriasis by linking them to the genes that they regulate. Methods: We constructed genomic 3-dimensional maps of human keratinocytes during differentiation by using targeted chromosome conformation capture (Capture Hi-C) targeting more than 20,000 promoters and 214 GWAS variants and combined these data with transcriptome and epigenomic data sets. We validated our results with reporter assays, clustered regularly interspaced short palindromic repeats activation, and examination of patient gene expression from previous studies. Results: We identified 118 target genes of 82 AD and psoriasis GWAS variants. Differential expression of 58 of the 118 target genes (49%) occurred in either AD or psoriatic lesions, many of which were not previously linked to any skin disease. We highlighted the genes AFG1L, CLINT1, ADO, LINC00302, and RP1-140J1.1 and provided further evidence for their potential roles in AD and psoriasis. Conclusions: Our work focused on skin barrier pathology through investigation of the interaction profile of GWAS variants during keratinocyte differentiation. We have provided a catalogue of candidate genes that could modulate the risk of AD and psoriasis. Given that only 35% of the target genes are the gene nearest to the known GWAS variants, we expect that our work will contribute to the discovery of novel pathways involved in AD and psoriasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy