SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sparwasser Tim) "

Sökning: WFRF:(Sparwasser Tim)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akeus, Paulina, et al. (författare)
  • Treg-cell depletion promotes chemokine production and accumulation of CXCR3(+) conventional T cells in intestinal tumors.
  • 2015
  • Ingår i: European journal of immunology. - : Wiley. - 1521-4141 .- 0014-2980. ; 45:6, s. 1654-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer (CRC) is one of the most prevalent tumor types worldwide and tumor-infiltrating T cells are crucial for anti-tumor immunity. We previously demonstrated that Treg cells from CRC patients inhibit transendothelial migration of conventional T cells. However, it remains unclear if local Treg cells affect lymphocyte migration into colonic tumors. By breeding APC(Min/+) mice with depletion of regulatory T cells mice, expressing the diphtheria toxin receptor under the control of the FoxP3 promoter, we were able to selectively deplete Treg cells in tumor-bearing mice, and investigate the impact of these cells on the infiltration of conventional T cells into intestinal tumors. Short-term Treg-cell depletion led to a substantial increase in the frequencies of T cells in the tumors, attributed by both increased infiltration and proliferation of T cells in the Treg-cell-depleted tumors. We also demonstrate a selective increase of the chemokines CXCL9 and CXCL10 in Treg-cell-depleted tumors, which were accompanied by accumulation of CXCR3(+) T cells, and increased IFN-γ mRNA expression. In conclusion, Treg-cell depletion increases the accumulation of conventional T cells in intestinal tumors, and targeting Treg cells could be a possible anti-tumor immunotherapy, which not only affects T-cell effector functions, but also their recruitment to tumors.
  •  
2.
  • Klingenberg, Roland, et al. (författare)
  • Depletion of FOXP3(+) regulatory T cells promotes hypercholesterolemia and atherosclerosis
  • 2013
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 123:3, s. 1323-1334
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under control of the Treg-specific Foxp3 promoter, allowing for specific ablation of FOXP3(+) Tregs. Lethally irradiated, atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice received DEREG bone marrow and were injected with DT to eliminate FOXP3(+) Tregs. Depletion of Tregs caused a 2.1-fold increase in atherosclerosis without a concomitant increase in vascular inflammation. These mice also exhibited a 1.7-fold increase in plasma cholesterol and an atherogenic lipoprotein profile with increased levels of VLDL. Clearance of VLDL and chylomicron remnants was hampered, leading to accumulation of cholesterol-rich particles in the circulation. Functional and protein analyses complemented by gene expression array identified reduced protein expression of sortilin-1 in liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein as mediators of the altered lipid phenotype. These results demonstrate that FOXP3(+) Tregs inhibit atherosclerosis by modulating lipoprotein metabolism.
  •  
3.
  • Niedzielska, Magdalena, et al. (författare)
  • Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production.
  • 2015
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 195:4, s. 1753-1762
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-β, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-β and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-β expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-β production by these cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy