SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spetz Anna Lena) "

Sökning: WFRF:(Spetz Anna Lena)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Groß, Rüdiger, et al. (författare)
  • Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2
  • 2022
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 9:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core–shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses. 
  •  
2.
  • Hinkula, Jorma, et al. (författare)
  • Neutralizing activity and cellular immune responses induced in mice after immunization with apoptotic HIV-1/murine leukemia virus infected cells
  • 2009
  • Ingår i: VACCINE. - : Elsevier BV. - 0264-410X .- 1873-2518. ; 27:46, s. 6424-6431
  • Tidskriftsartikel (refereegranskat)abstract
    • Dendritic cells present microbial antigens to T cells after uptake of apoptotic vesicles from infected cells. We previously reported that immunizations with apoptotic HIV-1/murine leukemia virus (MuLV) infected cells lead to induction of both cellular and humoral immune responses as well as resistance to mucosal challenge with live HIV-1/MuLV infected cells. Here we extended those studies and investigated whether apoptotic cells from HIV-1/MuLV infected cells stimulate the production of HIV-1 neutralizing activity. We compared different routes of administration and were able to induce p24- and Nef-specific cellular proliferation after intraperitoneal (i.p.), intranasal (i.n.), subcutaneous (s.c.) and intramuscular (i.m.) immunizations. Serum IgG and IgA antibodies directed against gp160, p24, or Nef were also produced regardless of immunization route used. However, the induction of mucosa-associated IgAs from faeces or vaginal secretions were detected only after either i.p. or i.n. immunizations. We were able to measure neutralizing activity in sera of mice after i.p. and i.n. immunization. Neutralizing reactivity was also detected after s.c. and i.m. immunizations in the presence of the cytokine adjuvant granulocyte macrophage-colony stimulating factor (GM-CSF). Conclusively we show induction of cellular and humoral immune responses including neutralizing activity after immunization with apoptotic HIV-1/MuLV infected cells in mice. The results from this study support further evaluations using apoptotic cells as antigen delivery system for vaccination against HIV-1 in other animal models.
  •  
3.
  • Weil, Tatjana, et al. (författare)
  • Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses
  • 2022
  • Ingår i: JACS Au. - : American Chemical Society (ACS). - 2691-3704. ; 2:9, s. 2187-2202
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.
  •  
4.
  • Adam, Lucille, et al. (författare)
  • Early Resistance of Non-virulent Mycobacterial Infection in C57BL/6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp
  • 2018
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Early clearance of tuberculosis is the successful eradication of inhaled bacteria before the development of an adaptive immune response. We previously showed, by utilizing a non-virulent mycobacteria infection model, that C57BL/6 mice are more efficient than BALB/c in their control of bacterial growth in the lungs during the first weeks of the infection. Here, we assessed early (within 1-3 days) innate immune events locally in the lungs to identify factors that may contribute to the control of non-virulent mycobacterial burden. We confirmed that C57BL/6 mice are more resistant to infection compared with BALB/c after intranasal inoculation with mycobacterium. Transcriptomic analyses revealed a remarkably silent signature in C57BL/6 mice despite effective control of bacterial growth. In contrast, BALB/c mice up-regulated genes associated with neutrophil and myeloid cell chemotaxis and migration. Flow cytometry analyses corroborated the transcriptomic analyses and demonstrated influx of both neutrophil and myeloid cell populations in BALB/c mice, while these did not increase in C57BL/6 mice. We further detected increased release of TNF-alpha from BALB/c lung cells but limited release from C57BL/6-derived cells. However, C57BL/6 mice showed a marked early up-regulation of the Camp gene, encoding the cathelicidin CRAMP peptide, post-mycobacterial exposure. CRAMP (LL-37 in human) expression in the lungs was confirmed using immunofluorescence staining. Altogether, these findings show that C57BL/6 mice can clear the mycobacterial infection early and that this early control is associated with high CRAMP expression in the lungs without concomitant influx of immune cells. The role of CRAMP/LL-37 during mycobacterial infection may be relevant for novel protective strategies, and warrants further studies of human cohorts.
  •  
5.
  • Adam, Lucille, et al. (författare)
  • Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination
  • 2020
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 204:12, s. 3375-3388
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1a(int)-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
  •  
6.
  •  
7.
  • Axberg Pålsson, Sandra, 1991-, et al. (författare)
  • Inhibition of Respiratory Syncytial Virus Infection by Small Non-Coding RNA Fragments
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory syncytial virus (RSV) causes acute lower respiratory tract infection in infants, immunocompromised individuals and the elderly. As the only current specific treatment options for RSV are monoclonal antibodies, there is a need for efficacious antiviral treatments against RSV to be developed. We have previously shown that a group of synthetic non-coding single-stranded DNA oligonucleotides with lengths of 25-40 nucleotides can inhibit RSV infection in vitro and in vivo. Based on this, herein, we investigate whether naturally occurring single-stranded small non-coding RNA (sncRNA) fragments present in the airways have antiviral effects against RSV infection. From publicly available sequencing data, we selected sncRNA fragments such as YRNAs, tRNAs and rRNAs present in human bronchoalveolar lavage fluid (BALF) from healthy individuals. We utilized a GFP-expressing RSV to show that pre-treatment with the selected sncRNA fragments inhibited RSV infection in A549 cells in vitro. Furthermore, by using a flow cytometry-based binding assay, we demonstrate that these naturally occurring sncRNAs fragments inhibit viral infection most likely by binding to the RSV entry receptor nucleolin and thereby preventing the virus from binding to host cells, either directly or via steric hindrance. This finding highlights a new function of sncRNAs and displays the possibility of using naturally occurring sncRNAs as treatments against RSV.
  •  
8.
  • Axberg Pålsson, Sandra, et al. (författare)
  • Single-Stranded Oligonucleotide-Mediated Inhibition of Respiratory Syncytial Virus Infection
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections in young children. Currently, there is no RSV vaccine or universally accessible antiviral treatment available. Addressing the urgent need for new antiviral agents, we have investigated the capacity of a non-coding single-stranded oligonucleotide (ssON) to inhibit RSV infection. By utilizing a GFP-expressing RSV, we demonstrate that the ssON significantly reduced the proportion of RSV infected A549 cells (lung epithelial cells). Furthermore, we show that ssON's antiviral activity was length dependent and that both RNA and DNA of this class of oligonucleotides have antiviral activity. We reveal that ssON inhibited RSV infection by competing with the virus for binding to the cellular receptor nucleolin in vitro. Additionally, using a recombinant RSV that expresses luciferase we show that ssON effectively blocked RSV infection in mice. Treatment with ssON in vivo resulted in the upregulation of RSV-induced interferon stimulated genes (ISGs) such as Stat1, Stat2, Cxcl10, and Ccl2. This study highlights the possibility of using oligonucleotides as therapeutic agents against RSV infection. We demonstrate that the mechanism of action of ssON is the inhibition of viral entry in vitro, likely through the binding of the receptor, nucleolin and that ssON treatment against RSV infection in vivo additionally results in the upregulation of ISGs.
  •  
9.
  • Axberg Pålsson, Sandra, 1991- (författare)
  • The role of non-coding single-stranded oligonucleotides on Respiratory syncytial virus infection
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Respiratory syncytial virus (RSV) is an enveloped RNA virus of the Pneumoviridae family. RSV is reported to infect host cells by receptor-mediated endocytosis, also called clathrin-dependent endocytosis. Many reports indicate that the virus utilizes the host receptor nucleolin for entry. RSV is one of the leading causes of acute lower respiratory tract infection in children, the elderly and immunocompromised individuals. It is therefore important to find viable treatments against RSV infections. To this date, the development of an RSV vaccine has unfortunately been unsuccessful. Therefore, a lot of research is instead focusing on developing entry or replication inhibitors against RSV.We have previously discovered that a 35 bases long single-stranded oligonucleotide (ssON) can inhibit certain endocytic pathways, such as clathrin- and caveolin-dependent endocytosis. Based on this, the overall aim of the projects in this thesis is to investigate if ssON can work as an entry inhibitor against RSV and to study the overall effect that ssON has on RSV infection in vivo in a murine RSV challenge model. Furthermore, we aim to study the effect that proteins present in the surrounding extracellular environment of the virus have on the viral infectivity and pathogenesis.In Paper I we show that single-stranded oligonucleotides can inhibit RSV infection in vitro and in vivo. We demonstrate that ssON shields nucleolin in vitro. Nucleolin is a receptor involved in RSV entry and by shielding nucleolin present in the cell membrane, ssON prevents RSV from binding to the cells. Furthermore, we show that ssON inhibits RSV infection in vivo. ssON treatment of RSV infection was associated with enhanced expression of RSV-induced Interferon-stimulated genes (ISGs), suggesting that interferon responses likely contributed to reduced RSV infection. As a continuation to Paper I, in Paper II we investigate if small non-coding RNAs (sncRNAs) exhibit the same antiviral capacity as ssON. We demonstrate that sncRNAs, of similar size as ssON, can inhibit RSV infection in vitro and similarly to ssON, they bind to the entry co-receptor nucleolin. In Paper III we study the pathogenesis of RSV. We show that proteins from the extracellular environment of the virus can bind to the virus and affect the viral infectivity as well as the interaction of the virus with host cells. We determine that RSV accumulates a rich and distinctive protein corona in different biological fluids including human plasma (HP), human bronchoalveolar lavage fluid (BALF), non-human primate plasma (MP) and fetal bovine serum (FBS). We show that RSV incubated with BALF has an increased viral infectivity in epithelial HEp-2 and monocyte-derived dendritic cells (moDCs). Moreover, RSV surrounded by a BALF-derived corona induce the activation of moDCs as assessed by increased expression of co-stimulatory molecules.In summary, the projects in this thesis aim to assess the hypothesis that single-stranded oligonucleotides of DNA or RNA origin can be used to inhibit RSV infection. Furthermore, we aim to determine the effects, in terms of viral infectivity and pathogenesis, of the differential protein compositions present in biological fluids surrounding viruses.
  •  
10.
  • Bergenstråhle, Joseph, et al. (författare)
  • Spatial transcriptomic profiling of RespiratorySyncytial Virus (RSV) infection
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Despite the fact that the human Respiratory Syncytial Virus (RSV) was first discoveredback in 1956, it remains one of the leading causes of morbidity and mortality inyoung children. Transcriptome-wide spatially resolved transcriptomics is a technologyunder rapid development that introduces a new modality for exploratory examinationof cellular behavior. With this modality, we examine how RSV infection changes thelocal cellular environment in the lung by infecting mice with RSV and comparing itto control samples four days after infection. We find viral presence in all compartmentsof the tissue, well-defined induced tertiary lymphoid tissue within some of thesamples, compartmentalized infiltration of innate immune cells, as well as functionalenrichment of airway epithelial repair pathways.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33
Typ av publikation
tidskriftsartikel (24)
annan publikation (4)
doktorsavhandling (2)
forskningsöversikt (2)
konferensbidrag (1)
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Spetz, Anna-Lena (23)
Pålsson, Sandra (6)
Axberg Pålsson, Sand ... (6)
Spetz, Anna-Lena, 19 ... (6)
Dondalska, Aleksandr ... (6)
Adam, Lucille (5)
visa fler...
Järver, Peter (5)
Lundeberg, Joakim (4)
Achour, Adnane (4)
Poux, Candice (4)
Uchtenhagen, Hannes (4)
Fenyö, Eva Maria (3)
Hinkula, Jorma (3)
Galloux, Marie (3)
Fernandez, Carmen (2)
Sönnerborg, Anders (2)
López-González, Mois ... (2)
Björk, Albin (2)
Wahren-Herlenius, Ma ... (2)
Le Grand, Roger (2)
Martinon, Frédéric (2)
Nylin, Sören (2)
Lehtio, Janne (2)
Nilsson, Gunnar (2)
El-Andaloussi, Samir (2)
Bergenstråhle, Josep ... (2)
Kutter, Claudia (2)
Theopold, Ulrich (2)
Lagerström, Malin C. (2)
Friedländer, Marc R. (2)
Bergenstråhle, Jose ... (2)
Sekar, Vaishnovi (2)
Sedano, Laura (2)
Power, Ultan F. (2)
Rameix-Welti, Marie- ... (2)
Eleouet, Jean-Franco ... (2)
Le Goffic, Ronan (2)
Spetz, Anna-Lena, Pr ... (2)
Wahren, Britta (2)
Gao, Tianle (2)
Cena-Diez, Rafael (2)
Ma, Haisha (2)
Magnúsdóttir, Elín I ... (2)
Lerner, Ethan A. (2)
Dondalska, Aleksandr ... (2)
Fors, Lisa (2)
Grünwald, Thomas (2)
Thorstensson, Rigmor (2)
Groß, Rüdiger (2)
Issmail, Leila (2)
visa färre...
Lärosäte
Stockholms universitet (20)
Karolinska Institutet (19)
Uppsala universitet (5)
Lunds universitet (5)
Kungliga Tekniska Högskolan (4)
Linköpings universitet (4)
visa fler...
Göteborgs universitet (2)
Umeå universitet (1)
visa färre...
Språk
Engelska (33)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (21)
Naturvetenskap (15)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy