SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spielhagen R. F.) "

Sökning: WFRF:(Spielhagen R. F.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cronin, T. M., et al. (författare)
  • Deep Arctic Ocean warming during the last glacial cycle
  • 2012
  • Ingår i: Nature Geoscience. - 1752-0894 .- 1752-0908. ; 5:9, s. 631-634
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean(1-7) have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations(8-10) is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1-2 degrees C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.
  •  
2.
  •  
3.
  • Jakobsson, Martin, 1966-, et al. (författare)
  • New insights on Arctic Quaternary climate variability from palaeo-records and numerical modelling
  • 2010
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 29:25-26, s. 3349-3358
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial and marine geological archives in the Arctic contain information on environmental change through Quaternary interglacial–glacial cycles. The Arctic Palaeoclimate and its Extremes (APEX) scientific network aims to better understand the magnitude and frequency of past Arctic climate variability, with focus on the “extreme” versus the “normal” conditions of the climate system. One important motivation for studying the amplitude of past natural environmental changes in the Arctic is to better understand the role of this region in a global perspective and provide base-line conditions against which to explore potential future changes in Arctic climate under scenarios of global warming. In this review we identify several areas that are distinct to the present programme and highlight some recent advances presented in this special issue concerning Arctic palaeo-records and natural variability, including spatial and temporal variability of the Greenland Ice Sheet, Arctic Ocean sediment stratigraphy, past ice shelves and marginal marine ice sheets, and the Cenozoic history of Arctic Ocean sea ice in general and Holocene oscillations in sea ice concentrations in particular. The combined sea ice data suggest that the seasonal Arctic sea ice cover was strongly reduced during most of the early Holocene and there appear to have been periods of ice free summers in the central Arctic Ocean. This has important consequences for our understanding of the recent trend of declining sea ice, and calls for further research on causal links between Arctic climate and sea ice.
  •  
4.
  • Svendsen, JI, et al. (författare)
  • Late quaternary ice sheet history of northern Eurasia
  • 2004
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791. ; 23:11-13, s. 1229-1271
  • Forskningsöversikt (refereegranskat)abstract
    • The maximum limits of the Eurasian ice sheets during four glaciations have been reconstructed: (1) the Late Saalian (> 140 ka), (2) the Early Weichselian (100-80 ka), (3) the Middle Weichselian (60-50 ka) and (4) the Late Weichselian (25-15 ka). The reconstructed ice limits are based on satellite data and aerial photographs combined with geological field investigations in Russia and Siberia, and with marine seismic- and sediment core data. The Barents-Kara Ice Sheet got progressively smaller during each glaciation, whereas the dimensions of the Scandinavian Ice Sheet increased. During the last Ice Age the Barents-Kara Ice Sheet attained its maximum size as early as 90-80,000 years ago when the ice front reached far onto the continent. A regrowth of the ice sheets occurred during the early Middle Weichselian, culminating about 60-50,000 years ago. During the Late Weichselian the Barents-Kara Ice Sheet did not reach the mainland east of the Kanin Peninsula, with the exception of the NW fringe of Taimyr. A numerical ice-sheet model, forced by global sea level and solar changes, was run through the full Weichselian glacial cycle. The modeling results are roughly compatible with the geological record of ice growth, but the model underpredicts the glaciations in the Eurasian Arctic during the Early and Middle Weichselian. One reason for this is that the climate in the Eurasian Arctic was not as dry then as during the Late Weichselian glacial maximum.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy