SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spielmann Malte) "

Sökning: WFRF:(Spielmann Malte)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nmezi, Bruce, et al. (författare)
  • Genomic deletions upstream of lamin B1 lead to atypical autosomal dominant leukodystrophy
  • 2019
  • Ingår i: NEUROLOGY-GENETICS. - 2376-7839. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical, radiologic, and molecular analysis of patients with genomic deletions upstream of the LMNB1 gene.Methods Detailed neurologic, MRI examinations, custom array comparative genomic hybridization (aCGH) analysis, and expression analysis were performed in patients at different clinical centers. All procedures were approved by institutional review boards of the respective institutions.Results Five patients from 3 independent families presented at ages ranging from 32 to 52 years with neurologic symptoms that included progressive hypophonia, upper and lower limb weakness and spasticity, and cerebellar dysfunction and MRIs characterized by widespread white matter alterations. Patients had unique nonrecurrent deletions upstream of the LMNB1, varying in size from 250 kb to 670 kb. Deletion junctions were embedded in repetitive elements. Expression analysis revealed increased LMNB1 expression in patient cells.Conclusions Our findings confirmed the association between LMNB1 upstream deletions and leukodystrophy previously reported in a single family, expanding the phenotypic and molecular description of this condition. Although clinical and radiologic features overlapped with those of autosomal dominant leukodystrophy because of LMNB1 duplications, patients with deletions upstream of LMNB1 had an earlier age at symptom onset, lacked early dysautonomia, and appeared to have lesser involvement of the cerebellum and sparing of the spinal cord diameter on MRI. aCGH analysis defined a smaller minimal critical region required for disease causation and revealed that deletions occur at repetitive DNA genomic elements. Search for LMNB1 structural variants (duplications and upstream deletions) should be an integral part of the investigation of patients with autosomal dominant adult-onset leukodystrophy.
  •  
2.
  • Tesi, Bianca, et al. (författare)
  • Precision medicine in rare diseases : What is next?
  • 2023
  • Ingår i: Journal of Internal Medicine. - : Wiley. - 0954-6820 .- 1365-2796. ; 294:4, s. 397-412
  • Forskningsöversikt (refereegranskat)abstract
    • Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy