SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Spiga Silvia) "

Search: WFRF:(Spiga Silvia)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kerrebrouck, Joris Van, et al. (author)
  • 726.7-Gb/s 1.5-μm single-mode VCSEL discrete multi-tone transmission over 2.5-km multicore fiber
  • 2018
  • In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings. - : Institute of Electrical and Electronics Engineers Inc.. - 9781943580385 ; , s. 1-3
  • Conference paper (peer-reviewed)abstract
    • A 107Gb/s net-rate DMT optical signal was generated using a single-mode long-wavelength VCSEL with a modulation bandwidth of 23 GHz. We experimentally demonstrated a total net-rate up to 726.7Gb/s at 1.5μm over 2.5km 7-core dispersion-uncompensated MCF.
  •  
2.
  • Kerrebrouck, Joris Van, et al. (author)
  • High-speed PAM4-based Optical SDM Interconnects with Directly Modulated Long-wavelength VCSEL
  • 2019
  • In: Journal of Lightwave Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0733-8724 .- 1558-2213. ; 37:2, s. 356-362
  • Journal article (peer-reviewed)abstract
    • This paper reports the demonstration of high-speed PAM-4 transmission using a 1.5-μm single-mode vertical cavity surface emitting laser (SM-VCSEL) over multicore fiber with 7 cores over different distances. We have successfully generated up to 70 Gbaud 4-level pulse amplitude modulation (PAM-4) signals with a VCSEL in optical back-to-back, and transmitted 50 Gbaud PAM-4 signals over both 1-km dispersion-uncompensated and 10-km dispersion-compensated in each core, enabling a total data throughput of 700 Gbps over the 7-core fiber. Moreover, 56 Gbaud PAM-4 over 1-km has also been shown, whereby unfortunately not all cores provide the required 3.8 × 10$^-3$bit error rate (BER) for the 7% overhead-hard decision forward error correction (7% OH HDFEC). The limited bandwidth of the VCSEL and the adverse chromatic dispersion of the fiber are suppressed with pre-equalization based on accurate end-to-end channel characterizations. With a digital post-equalization, BER performance below the 7% OH-HDFEC limit is achieved over all cores. The demonstrated results show a great potential to realize high-capacity and compact short-reach optical interconnects for data centers.
  •  
3.
  • Lillis, Robert J., et al. (author)
  • MOSAIC: A satellite constellation to enable groundbreaking mars climate system science and prepare for human exploration
  • 2021
  • In: Planetary Science Journal. - : Institute of Physics (IOP). - 2632-3338. ; 2:5
  • Journal article (peer-reviewed)abstract
    • The Martian climate system has been revealed to rival the complexity of Earth's. Over the last 20 yr, a fragmented and incomplete picture has emerged of its structure and variability; we remain largely ignorant of many of the physical processes driving matter and energy flow between and within Mars' diverse climate domains. Mars Orbiters for Surface, Atmosphere, and Ionosphere Connections (MOSAIC) is a constellation of ten platforms focused on understanding these climate connections, with orbits and instruments tailored to observe the Martian climate system from three complementary perspectives. First, low-circular near-polar Sun-synchronous orbits (a large mothership and three smallsats spaced in local time) enable vertical profiling of wind, aerosols, water, and temperature, as well as mapping of surface and subsurface ice. Second, elliptical orbits sampling all of Mars' plasma regions enable multipoint measurements necessary to understand mass/energy transport and ion-driven escape, also enabling, with the polar orbiters, dense radio occultation coverage. Last, longitudinally spaced areostationary orbits enable synoptic views of the lower atmosphere necessary to understand global and mesoscale dynamics, global views of the hydrogen and oxygen exospheres, and upstream measurements of space weather conditions. MOSAIC will characterize climate system variability diurnally and seasonally, on meso-, regional, and global scales, targeting the shallow subsurface all the way out to the solar wind, making many first-of-their-kind measurements. Importantly, these measurements will also prepare for human exploration and habitation of Mars by providing water resource prospecting, operational forecasting of dust and radiation hazards, and ionospheric communication/positioning disruptions.
  •  
4.
  • Pang, Xiaodan, Dr., et al. (author)
  • 7×100 Gbps PAM-4 Transmission over 1-km and 10-km Single Mode 7-core Fiber using 1.5-μm SM-VCSEL
  • 2018
  • In: Optical Fiber Communication Conference OSA Technical Digest (online) (Optical Society of America, 2018), paper M1I.4. - : Optical Society of America. - 9781943580385
  • Conference paper (peer-reviewed)abstract
    • 100 Gbps/λ/core PAM-4 transmission is successfully demonstrated over 1-km and 10-km single mode 7-core fiber links, enabled by directly modulated 1.5-μm single mode VCSEL of 23 GHz modulation bandwidth with pre- and post- digital equalizations.
  •  
5.
  • Pang, Xiaodan, Dr., et al. (author)
  • 7x100 Gbps PAM-4 Transmission over 1-km and 10-km Single Mode 7-core Fiber using 1.5-mu m SM-VCSEL
  • 2018
  • In: 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781943580385
  • Conference paper (peer-reviewed)abstract
    • 100 Gbps/lambda/core PAM-4 transmission is successfully demonstrated over 1-km and 10km single mode 7-core fiber links, enabled by directly modulated 1.5-mu m single mode VCSEL of 23 GHz modulation bandwidth with pre-and post-digital equalizations.
  •  
6.
  •  
7.
  • Soffitta, Paolo, et al. (author)
  • XIPE : the X-ray imaging polarimetry explorer
  • 2013
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 36:3, s. 523-567
  • Journal article (peer-reviewed)abstract
    • X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017. The proposal was, unfortunately, not selected. To be compliant with this schedule, we designed the payload mostly with existing items. The XIPE proposal takes advantage of the completed phase A of POLARIX for an ASI small mission program that was cancelled, but is different in many aspects: the detectors, the presence of a solar flare polarimeter and photometer and the use of a light platform derived by a mass production for a cluster of satellites. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus. Two additional GPDs filled with a 3-bar Ar-DME mixture always face the Sun to detect polarization from solar flares. The Minimum Detectable Polarization of a 1 mCrab source reaches 14 % in the 2-10 keV band in 10(5) s for pointed observations, and 0.6 % for an X10 class solar flare in the 15-35 keV energy band. The imaging capability is 24 arcsec Half Energy Width (HEW) in a Field of View of 14.7 arcmin x 14.7 arcmin. The spectral resolution is 20 % at 6 keV and the time resolution is 8 mu s. The imaging capabilities of the JET-X optics and of the GPD have been demonstrated by a recent calibration campaign at PANTER X-ray test facility of the Max-Planck-Institut fur extraterrestrische Physik (MPE, Germany). XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil). The data policy is organized with a Core Program that comprises three months of Science Verification Phase and 25 % of net observing time in the following 2 years. A competitive Guest Observer program covers the remaining 75 % of the net observing time.
  •  
8.
  •  
9.
  • Zhang, Lu, et al. (author)
  • Nonlinearity Tolerant High-speed DMT Transmission with 1.5-μm Single-mode VCSEL and Multi-core Fibers for Optical Interconnects
  • 2019
  • In: Journal of Lightwave Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0733-8724 .- 1558-2213. ; 37:2, s. 380-388
  • Journal article (peer-reviewed)abstract
    • We experimentally demonstrate the generation of 107-Gbit/s net-rate optical discrete multitone (DMT) signal using a 1.5-μm single-mode vertical cavity surface emitting laser (VCSEL) with modulation bandwidth of 22-GHz. Utilizing a nonlinearity-tolerant channel equalization algorithm for digital signal processing (DSP), total net-rates of 726.6-Gbit/s over 2.5-km dispersion-uncompensated 7-core fiber and 533.1-Gbit/s over 10-km dispersion-compensated 7-core fiber below 7% overhead hard-decision forward error correction (HD-FEC) limit have been experimentally achieved with a 1.5-μm VCSEL based intensity-modulation direct-detection (IM/DD) system. The features of the 1.5-μm single-mode VCSEL, 2.5-km/10km multi-core fibers and fan-in/fan-out modules are presented. Besides, the Volterra series based nonlinearity-tolerant channel equalization algorithm, which improves the signal-to-noise ratio (SNR) with more than 5-dB, is mathematically described and experimentally validated. The results have demonstrated that 1.5-μm single-mode VCSEL and multi-core fiber based transmission can be a promising candidate to solve the capacity challenges in short-reach optical interconnects.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view