SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sprang C) "

Sökning: WFRF:(Sprang C)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Van Sprang, P. A., et al. (författare)
  • The derivation of effects threshold concentrations of lead for European freshwater ecosystems
  • 2016
  • Ingår i: Environmental Toxicology and Chemistry. - : Wiley-Blackwell. - 0730-7268 .- 1552-8618. ; 35:5, s. 1310-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • The main objective of the present study was to derive ecologically relevant effect threshold concentrations of (dissolved) Pb for selected European Union (EU) freshwater rivers, using the 2008EU Voluntary Risk Assessment Report as a starting point and more advanced methodologies than those used in the Voluntary Risk Assessment Report. This included 1) implementing more robust quality criteria for selecting chronic toxicity data; 2) the conversion of total to dissolved Pb concentrations using a combination of an empirical equation relating inorganic Pb solubility and geochemical speciation modeling to account for effects of dissolved organic matter; 3) the use of bioavailability models for chronic toxicity for species belonging to 3 different trophic levels; and 4) the use of robust methods for large data set handling (such as species sensitivity distribution [SSD] analysis). The authors used published bioavailability models for an algal species (Pseudokirchneriella subcapitata) and a daphnid (Ceriodaphnia dubia) and developed a new model for the fathead minnow (Pimephales promelas). The research has shown that these models are also useful for, and reasonably accurate in, predicting chronic toxicity to other species, including a snail, a rotifer, midge larvae, and an aquatic plant (read-across). A comprehensive chronic toxicity data set for Pb was compiled, comprising 159 individual high-quality toxicity data for 25 different species. By applying the total dissolved conversion and the bioavailability models, normalized toxicity values were obtained, which were then entered into a SSD analysis. Based on the parametric best-fitting SSDs, the authors calculated that ecological threshold concentrations of Pb protecting 95% of freshwater species for 7 selected European freshwater scenarios were between 6.3μg dissolved Pb/L and 31.1μg dissolved Pb/L. Environ Toxicol Chem 2016;35:1310-1320.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Koivisto, Antti Joonas, et al. (författare)
  • Evaluating the Theoretical Background of STOFFENMANAGER®and the Advanced REACH Tool
  • 2022
  • Ingår i: Annals of Work Exposures and Health. - : Oxford University Press (OUP). - 2398-7308 .- 2398-7316. ; 66:4, s. 520-536
  • Tidskriftsartikel (refereegranskat)abstract
    • STOFFENMANAGER® and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER® alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020. Regardless of their widespread use, this is the first study evaluating the theoretical backgrounds of each model. STOFFENMANAGER® and ART are based on a modified multiplicative model where an exposure base level (mg m-3) is replaced with a dimensionless intrinsic emission score and the exposure modifying factors are replaced with multipliers that are mainly based on subjective categories that are selected by using exposure taxonomy. The intrinsic emission is a unit of concentration to the substance emission potential that represents the concentration generated in a standardized task without local ventilation. Further information or scientific justification for this selection is not provided. The multipliers have mainly discrete values given in natural logarithm steps (⋯, 0.3, 1, 3, ⋯) that are allocated by expert judgements. The multipliers scientific reasoning or link to physical quantities is not reported. The models calculate a subjective exposure score, which is then translated to an exposure level (mg m-3) by using a calibration factor. The calibration factor is assigned by comparing the measured personal exposure levels with the exposure score that is calculated for the respective exposure scenarios. A mixed effect regression model was used to calculate correlation factors for four exposure group [e.g. dusts, vapors, mists (low-volatiles), and solid object/abrasion] by using ∼1000 measurements for STOFFENMANAGER® and 3000 measurements for ART. The measurement data for calibration are collected from different exposure groups. For example, for dusts the calibration data were pooled from exposure measurements sampled from pharmacies, bakeries, construction industry, and so on, which violates the empirical model basic principles. The calibration databases are not publicly available and thus their quality or subjective selections cannot be evaluated. STOFFENMANAGER® and ART can be classified as subjective categorization tools providing qualitative values as their outputs. By definition, STOFFENMANAGER® and ART cannot be classified as mechanistic models or empirical models. This modeling algorithm does not reflect the physical concept originally presented for the STOFFENMANAGER® and ART. A literature review showed that the models have been validated only at the 'operational analysis' level that describes the model usability. This review revealed that the accuracy of STOFFENMANAGER® is in the range of 100 000 and for ART 100. Calibration and validation studies have shown that typical log-transformed predicted exposure concentration and measured exposure levels often exhibit weak Pearson's correlations (r is <0.6) for both STOFFENMANAGER® and ART. Based on these limitations and performance departure from regulatory criteria for risk assessment models, it is recommended that STOFFENMANAGER® and ART regulatory acceptance for chemical safety decision making should be explicitly qualified as to their current deficiencies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy