SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spyromilio Jason) "

Sökning: WFRF:(Spyromilio Jason)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alp, Dennis, et al. (författare)
  • The 30 Year Search for the Compact Object in SN 1987A
  • 2018
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 864:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite more than 30 years of searching, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1 x 10(-26) erg s(-1) cm(-2) Hz(-1)) at 213 GHz, 1 L-circle dot (6 x 10(-29) erg s(-1) cm(-2) Hz(-1)) in the optical if our line of sight is free of ejecta dust, and 10(36) erg s(-1) (2 x 10(-30) erg s(-1) cm(-2) Hz(-1) ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models. The allowed bolometric luminosity of the compact object is 22 L-circle dot if our line of sight is free of ejecta dust, or 138L(circle dot) if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star (NS) to <4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency 77 is limited to <10(-11) eta(-1) M-circle dot yr(-1), which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P) is B less than or similar to 10(14) P-2 G s(-2), which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, we infer that the compact object is a dust-obscured thermally emitting NS, which may appear as a region of higher-temperature ejecta dust emission.
  •  
2.
  • Arendt, Richard G., et al. (författare)
  • JWST NIRCam Observations of SN 1987A : Spitzer Comparison and Spectral Decomposition
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 959:2
  • Tidskriftsartikel (refereegranskat)abstract
    • JWST Near Infrared Camera (NIRCam) observations at 1.5–4.5 μm have provided broadband and narrowband imaging of the evolving remnant of SN 1987A with unparalleled sensitivity and spatial resolution. Comparing with previous marginally spatially resolved Spitzer Infrared Array Camera (IRAC) observations from 2004 to 2019 confirms that the emission arises from the circumstellar equatorial ring (ER), and the current brightness at 3.6 and 4.5 μm was accurately predicted by extrapolation of the declining brightness tracked by IRAC. Despite the regular light curve, the NIRCam observations clearly reveal that much of this emission is from a newly developing outer portion of the ER. Spots in the outer ER tend to lie at position angles in between the well-known ER hotspots. We show that the bulk of the emission in the field can be represented by five standard spectral energy distributions, each with a distinct origin and spatial distribution. This spectral decomposition provides a powerful technique for distinguishing overlapping emission from the circumstellar medium and the supernova ejecta, excited by the forward and reverse shocks, respectively.
  •  
3.
  • Cigan, Phil, et al. (författare)
  • High Angular Resolution ALMA Images of Dust and Molecules in the SN 1987A Ejecta
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high angular resolution (similar to 80 mas) ALMA continuum images of the SN.1987A system, together with CO J = 2 -> 1, J = 6 -> 5, and SiO J = 5 -> 4 to J = 7 -> 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H alpha images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO J = 6 -> 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO J = 6 -> 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO J = 2 -> 1 and SiO J = 5 -> 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared-millimeter spectral energy distribution give ejecta dust temperatures of 18-23 K. We revise the ejecta dust mass to M-dust = 0.2-0.4 M-circle dot for carbon or silicate grains, or a maximum of <0.7 M-circle dot for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
  •  
4.
  • Cikota, Aleksandar, et al. (författare)
  • Testing the magnetar scenario for superluminous supernovae with circular polarimetry
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 479:4, s. 4984-4990
  • Tidskriftsartikel (refereegranskat)abstract
    • Superluminous supernovae (SLSNe) are at least similar to 5 times more luminous than common supernovae. Especially hydrogen-poor SLSN-I are difficult to explain with conventional powering mechanisms. One possible scenario that might explain such luminosities is that SLSNe-I are powered by an internal engine, such as a magnetar or an accreting black hole. Strong magnetic fields or collimated jets can circularly polarize light. In this work, we measured circular polarization of two SLSNe-I with the FOcal Reducer and low dispersion Spectrograph (FORS2) mounted at the ESO's Very Large Telescope. PS17bek, a fast-evolving SLSN-I, was observed around peak, while OGLE16dmu, a slowly evolving SLSN-I, was observed 100 d after maximum. Neither SLSN shows evidence of circularly polarized light; however, these non-detections do not rule out the magnetar scenario as the powering engine for SLSNe-I. We calculate the strength of the magnetic field and the expected circular polarization as a function of distance from the magnetar, which decreases very fast. Additionally, we observed no significant linear polarization for PS17bek at four epochs, suggesting that the photosphere near peak is close to spherical symmetry.
  •  
5.
  • Fransson, Claes, et al. (författare)
  • DISCOVERY OF MOLECULAR HYDROGEN IN SN 1987A
  • 2016
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics Publishing. - 2041-8205 .- 2041-8213. ; 821:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Both CO and SiO have been observed at early and late phases in SN 1987A. H-2 was predicted to form at roughly the same time as these molecules, but was not detected at early epochs. Here, we report the detection of NIR lines from H-2 at 2.12 and 2.40 mu m in VLT/SINFONI spectra obtained between days 6489 and 10,120. The emission is concentrated to the core of the SN in contrast to Ha and approximately coincides with the [Si I]/[Fe II] emission detected previously in the ejecta. Different excitation mechanisms and power sources of the emission are discussed. From the nearly constant H-2 luminosities, we favor excitation resulting from the Ti-44 decay.
  •  
6.
  • Fransson, Claes, et al. (författare)
  • Late spectral evolution of the ejecta and reverse shock in SN 1987a
  • 2013
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 768:1, s. 88-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations with the Very Large Telescope and Hubble Space Telescope (HST) of the broad emission lines from the inner ejecta and reverse shock of SN 1987A from 1999 February until 2012 January (days 4381-9100 after explosion). We detect broad lines from H alpha, H beta, Mg I], Na I, [O I], [Ca II], and a feature at similar to 9220 angstrom. We identify the latter line with Mg II lambda lambda 9218, 9244, which is most likely pumped by Ly alpha fluorescence. H alpha and H beta both have a centrally peaked component extending to similar to 4500 km s(-1) and a very broad component extending to greater than or similar to 11,000 km s(-1), while the other lines have only the central component. The low-velocity component comes from unshocked ejecta, heated mainly by X-rays from the circumstellar environment, whereas the very broad component comes from faster ejecta passing through the reverse shock, created by the collision with the circumstellar ring. The flux in H alpha from the reverse shock has increased by a factor of four to six from 2000 to 2007. After that there is a tendency of flattening of the light curve, similar to what may be seen in the optical lines from the shocked ring. The core component seen in H alpha, [Ca II], and Mg II has experienced a similar increase, which is consistent with that found from HST photometry. The energy deposition of the external X-rays is calculated using explosion models for SN 1987A and we predict that the outer parts of the unshocked ejecta will continue to brighten because of this. The external X-ray illumination also explains the edge-brightened morphology of the ejecta seen in the HST images. We finally discuss evidence for dust in the ejecta from line asymmetries.
  •  
7.
  • Fransson, Claes, et al. (författare)
  • THE DESTRUCTION OF THE CIRCUMSTELLAR RING OF SN 1987A
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 806:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present imaging and spectroscopic observations with Hubble Space Telescope and Very Large Telescope of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day similar to 8000 (similar to 2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500-1000 km s(-1), consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by similar to 2025.
  •  
8.
  • Gröningsson, Per, et al. (författare)
  • High resolution spectroscopy of the inner ring of SN 1987A
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 479:3, s. 761-777
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss high resolution VLT/UVES observations (FWHM similar to 6 kms(-1)) from October 2002 (day similar to 5700 past explosion) of the shock interaction of SN 1987A and its circumstellar ring. A large number of narrow emission lines from the unshocked ring, with ion stages from neutral up to Ne V and Fe VII, have been identified. A nebular analysis of the narrow lines from the unshocked gas indicates gas densities of (similar to 1.5 - 5.0) x 10(3) cm(-3) and temperatures of similar to 6.5 x 10(3) - 2.4 x 104 K. This is consistent with the thermal widths of the lines. From the shocked component we observe a large range of ionization stages from neutral lines to [FeXIV]. From a nebular analysis we find that the density in the low ionization region is 4 x 10(6) - 10(7) cm-3. There is a clear difference in the high velocity extension of the low ionization lines and that of lines from [Fe X - XIV], with the latter extending up to similar to- 390 km s(-1) in the blue wing for [Fe XIV], while the low ionization lines extend to typically similar to- 260 km s(-1). For H alpha a faint extension up to similar to- 450 km s(-1) can be seen probably arising from a small fraction of shocked high density clumps. We discuss these observations in the context of radiative shock models, which are qualitatively consistent with the observations. A fraction of the high ionization lines may originate in gas which has yet not had time to cool, explaining the difference in width between the low and high ionization lines. The maximum shock velocities seen in the optical lines are similar to 510 km s(-1). We expect the maximum width of especially the low ionization lines to increase with time.
  •  
9.
  • Gröningsson, Per, et al. (författare)
  • High resolution spectroscopy of the line emission from the inner circumstellar ring of SN 1987A and its hot spots
  • 2007
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • We discuss high resolution VLT/UVES observations (FWHM ~ 6 km/s) from October 2002 (day ~5700 past explosion) of the shock interaction of SN 1987A and its circumstellar ring. A nebular analysis of the narrow lines from the unshocked gas indicates gas densities of (1.5-5.0)E3 cm-3 and temperatures of 6.5E3-2.4E4 K. This is consistent with the thermal widths of the lines. From the shocked component we observe a large range of ionization stages from neutral lines to [Fe XIV]. From a nebular analysis we find that the density in the low ionization region is 4E6-1E7 cm-3. There is a clear difference in the high velocity extension of the low ionization lines and that of lines from [Fe X-XIV], with the latter extending up to ~ -390 km/s in the blue wing for [Fe XIV], while the low ionization lines extend to typically ~ -260 km/s. For H-alpha a faint extension up to ~ -450 km/s can be seen probably arising from a small fraction of shocked high density clumps. We discuss these observations in the context of radiative shock models, which are qualitatively consistent with the observations. A fraction of the high ionization lines may originate in gas which has yet not had time to cool down, explaining the difference in width between the low and high ionization lines. The maximum shock velocities seen in the optical lines are ~ 510 km/s. We expect the maximum width of especially the low ionization lines to increase with time.
  •  
10.
  • Gröningsson, Per, et al. (författare)
  • Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots
  • 2008
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 492:2, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • We present seven epochs between October 1999 and November 2007 of high resolution VLT/UVES echelle spectra of the ejecta-ring collision of SN 1987A.
The fluxes of most of the narrow lines from the unshocked gas decreased by a factor of 2-3 during this period, consistent with the decay from the initial ionization by the shock break-out. However, [O III] in particular shows an increase up to day ~6800. This agrees with radiative shock models where the pre-shocked gas is heated by the soft X-rays from the shock. The evolution of the [O III] line ratio shows a decreasing temperature of the unshocked ring gas, consistent with a transition from a hot, low density component which was heated by the initial flash ionization to the lower temperature in the pre-ionized gas ahead of the shocks.
The line emission from the shocked gas increases rapidly as the shock sweeps up more gas. We find that the neutral and high ionization lines follow the evolution of the Balmer lines roughly, while the intermediate ionization lines evolve less rapidly. Up to day ~6800, the optical light curves have a similar evolution to that of the soft X-rays. The break between day 6500 and day 7000 for [O III] and [Ne III] is likely due to recombination to lower ionization levels. Nevertheless, the evolution of the [Fe XIV] line, as well as the lines from the lowest ionization stages, continue to follow that of the soft X-rays, as expected.
There is a clear difference in the line profiles between the low and intermediate ionization lines, and those from the coronal lines at the earlier epochs. This shows that these lines arise from regions with different physical conditions, with at least a fraction of the coronal lines coming from adiabatic shocks. At later epochs the line widths of the low ionization lines, however, increase and approach those of the high ionization lines of [ Fe X-XIV] . The H line profile can be traced up to ~500 km s-1 at the latest epoch. This is consistent with the cooling time of shocks propagating into a density of (1-4) 104 cm-3. This means that these shocks are among the highest velocity radiative shocks observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy