SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Spyrou Ioannis) "

Sökning: WFRF:(Spyrou Ioannis)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nalvarte, Ivan, et al. (författare)
  • The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion
  • 2015
  • Ingår i: Bioscience Reports. - : PORTLAND PRESS LTD. - 0144-8463 .- 1573-4935. ; 35:e00269
  • Tidskriftsartikel (refereegranskat)abstract
    • The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510-54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1.
  •  
2.
  • Aguila, Monica, et al. (författare)
  • AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity
  • 2020
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 29:8, s. 1310-1318
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5(-/-) and P23H(+/-):Erdj5(-/-) mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
  •  
3.
  • Apostolou, Eirini, et al. (författare)
  • Ablation of the Chaperone Protein ERdj5 Results in a Sjogrens Syndrome-Like Phenotype in Mice, Consistent With an Upregulated Unfolded Protein Response in Human Patients
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Sjogrens syndrome (SS) is a chronic autoimmune disorder that affects mainly the exocrine glands. Endoplasmic reticulum (ER) stress proteins have been suggested to participate in autoimmune and inflammatory responses, either acting as autoantigens, or by modulating factors of inflammation. The chaperone protein ERdj5 is an ER-resident disulfide reductase, required for the translocation of misfolded proteins during ER-associated protein degradation. In this study we investigated the role of ERdj5 in the salivary glands (SGs), in association with inflammation and autoimmunity. Methods: In situ expression of ERdj5 and XBP1 activation were studied immunohistochemically in minor SG tissues from primary SS patients and non-SS sicca-complaining controls. We used the mouse model of ERdj5 ablation and characterized its features: Histopathological, serological (antinuclear antibodies and cytokine levels), and functional (saliva flow rate). Results: ERdj5 was highly expressed in the minor SGs of SS patients, with stain intensity correlated to inflammatory lesion severity and anti-SSA/Ro positivity. Moreover, SS patients demonstrated higher XBP1 activation within the SGs. Remarkably, ablation of ERdj5 in mice conveyed many of the cardinal features of SS, like spontaneous inflammation in SGs with infiltrating T and B lymphocytes, distinct cytokine signature, excessive cell death, reduced saliva flow, and production of anti-SSA/Ro and anti-SSB/La autoantibodies. Notably, these features were more pronounced in female mice. Conclusions: Our findings suggest a critical connection between the function of the ER chaperone protein ERdj5 and autoimmune inflammatory responses in the SGs and provide evidence for a new, potent animal model of SS.
  •  
4.
  • Psarra, Anna-Maria G., et al. (författare)
  • Glucocorticoid receptor isoforms in human hepatocarcinoma HepG2 and SaOS-2 osteosarcoma cells : presence of glucocorticoid receptor alpha in mitochondria and of glucocorticoid receptor beta in nucleoli
  • 2005
  • Ingår i: International Journal of Biochemistry and Cell Biology. - : Elsevier. - 1357-2725 .- 1878-5875. ; 37:12, s. 2544-2558
  • Tidskriftsartikel (refereegranskat)abstract
    • In the context of a possible direct action of glucocorticosteroids on mitochondrial transcription and/or apoptosis by way of cognate mitochondrial receptors, the possible localization of glucocorticoid receptors alpha and beta (GRalpha and GRbeta) in mitochondria was explored in human hepatocarcinoma HepG2 and osteosarcoma SaOS-2 cells, in which glucocorticoids exert an anabolic and apoptotic effect, respectively. In both cell types, GRalpha was detected in mitochondria, in nuclei and in cytosol by immunofluorescence labeling and confocal scanning microscopy, by immunogold electron microscopy and by Western blotting. GRbeta was shown to be almost exclusively restricted to the nucleus of the two cell types, being particularly concentrated in nucleoli, pointing to a solely nuclear role of this receptor isoform and to a possible function in nucleoli related processes. Computer analysis identified a putative internal mitochondrial targeting sequence within the glucocorticoid receptor. The demonstration of mitochondrially localized GRalpha in HepG2 and SaOS-2 cells corroborates previous findings in other cell types and further supports a direct role of this receptor in mitochondrial functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy