SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Srinivasa Prashanth) "

Sökning: WFRF:(Srinivasa Prashanth)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marin, Gustav, et al. (författare)
  • Experimental and finite element simulated box compression tests on paperboard packages at different moisture levels
  • 2020
  • Ingår i: Packaging technology & science. - 0894-3214 .- 1099-1522.
  • Tidskriftsartikel (refereegranskat)abstract
    • Finite element (FE) analyses can be used as a powerful tool in the package design process to study for instance stress and strain fields that arise during loading.An orthotropic linear elastic material model with a stress-based failure criterion was used to simulate box compression tests (BCT) of a paperboard package in the FE-solver LS-DYNA. Physical experiments were performed at 50, 70 and 90 % relative humidity (RH), respectively. The input parameters required for the simulations were calculated based on material characterization at standard climate (50 % RH and 23 °C) and a linear relation between mechanical material properties and moisture ratio established in earlier studies.The result showed that it was possible to accurately predict the load-compression curve of a BCT when moisture was accounted for. Furthermore, it was found that modelling of the mechanical properties of the creases are important for capturing the stiffness response of the package.To conclude, it was possible to predict the box compression strength and the linear stiffness response prior to the peak in the load-compression response at relevant moisture levels, by using the previously established linear relationship between moisture ratio and material properties. In addition to the moisture ratio at the preferred moisture level, the only material properties required were the in-plane strengths and stiffnesses, and the out-of-plane shear moduli at standard climate.
  •  
2.
  •  
3.
  • Srinivasa, Prashanth, et al. (författare)
  • A three-dimensional numerical model for large strain compression of nanofibrillar cellulose foams
  • 2018
  • Ingår i: Nordic Pulp & Paper Research Journal. - : AB SVENSK PAPPERSTIDNING. - 0283-2631 .- 2000-0669. ; 33:2, s. 256-270
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the suitability of three-dimensional Voronoi structures in representing a large strain macroscopic compressive response of nanofibrillar cellulose foams and understanding the connection between the features of the response and details of the microstructure. We utilise Lloyd's algorithm to generate centroidal tessellations to relax the Voronoi structures and have reduced polydispersity. We begin by validating these structures against simulations of structures recreated from microtomography scans. We show that by controlling the cell face curvature, it is possible to match the compressive response for a 96.02% porous structure. For the structures of higher porosity (98.41%), the compressive response can only be matched up to strain levels of 0.4 with the densification stresses being overestimated. We then ascertain the representative volume element (RVE) size based on the measures of relative elastic modulus and relative yield strength. The effects of cell face curvature and partially closed cells on the elastic modulus and plateau stress is then estimated. Finally, the large strain response is compared against the two-dimensional Voronoi model and available experimental data for NFC foams. The results show that compared to the two-dimensional model, the three-dimensional analysis provides a stiffer response at a given porosity due to earlier self-contact.
  •  
4.
  • Srinivasa, Prashanth, et al. (författare)
  • Analysis of the compressive response of Nano Fibrillar Cellulose foams
  • 2015
  • Ingår i: Mechanics of materials. - : Elsevier. - 0167-6636 .- 1872-7743. ; 80:Part A, s. 13-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Nano Fibrillar Cellulose (NFC) is fast emerging as a biomaterial with promising applications, one of which is cellular foam. The inner structure of the foam can take various shapes and hierarchical micro-structures depending on the manufacturing parameters. The compressive response of foams developed from these materials is currently a primary criterion for the material development. In this work, we focus on the connection between the non-linear part of the response and the inner structure of the material. We study the effect of internal contact and its contribution to gradual stiffening in the energy absorbing region and accelerated stiffening in the densification region of the large strain compressive response. We use the finite element method in this study and discuss the applicability and efficiency of different modelling techniques by considering well defined geometries and available experimental data. The relative contribution of internal contact is singled out and mapped onto the overall compressive response of the material. The effect of initial non-straightness of the cell walls is studied through superposing differing percentages of the buckling modes on the initial geometry. The initial non-straightness is seen to have a significant effect for only strains up to 1%. The secant modulus measured at slightly higher strains of 4%, demonstrates lesser effect from the non-straightness of cell walls. The simulations capture the compressive response well into the densification regime and there is an order of magnitude agreement in between simulations and experiments. We observed that internal contact is crucial for capturing the trend of compressive response.
  •  
5.
  •  
6.
  • Srinivasa, Prashanth, et al. (författare)
  • Experimental characterisation of nanofibrillated cellulose foams
  • 2015
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 22:6, s. 3739-3753
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a growing interest in applications for nanofibrillated cellulose based materials owing to their exceptional mechanical properties. Nanofibrillated cellulose (NFC) foam is one such derivative which has potential applications in a wide array of fields. Here, we characterise the mechanical properties of two particular high porosity NFC foams (98.13 and 98.96 %) prepared by a freeze drying process. We evaluate their behaviour in uni-axial and bi-axial compression with cyclic loading. The secondary loading cycles reveal complete irreversible damage of the microstructure, with the secondary loading path being characterised by near zero plateau stress. In force controlled tests, negligible hysteresis corroborates the idea that there is no energy dissipation owing to near complete microstructural damage. Furthermore, we observe no indications of preferential orientation of the microstructure in these tests. The stress responses in mutually perpendicular directions are seen to be identical, within statistical considerations. We then utilise the “pseudo-elastic” model developed and adopt it to the case of highly compressible Ogden strain energy formulation with a modified neo-Hookean for the unloading, with a view of fitting a continuum hyperelastic model to the experimental data. The material parameters obtained from uni-axial data are seen to be insufficient to describe the more general bi-axial deformation. The parameters obtained from the bi-axial test describe uni-axial deformation up to stretches of ~0.5 but overestimate the stress levels beyond that point.
  •  
7.
  • Srinivasa, Prashanth, et al. (författare)
  • Material properties of the cell walls in nanofibrillar cellulose foams from finite element modelling of tomography scans
  • 2017
  • Ingår i: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; :24, s. 519-533
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanical properties of the nanofibrillar cellulose foam depend on the microstructure of the foam and on the constituent solid properties. The latter are hard to extract experimentally due to difficulties in performing the experiments on the micro-scale. The aim of this work is to provide methodology for doing it indirectly using extracted geometry of the microstructure. X-ray computed tomography scans are used to reconstruct the microstructure of a nanofibrillar cellulose foam sample. By varying the levels of thresholding, structure of differing porosities of the same foam structure are obtained and their macroscopic properties of the uni-axial compression are computed by finite element simulations. A power law relation, equivalent to classical foam scaling laws, are fit to the data obtained from simulation at different relative densities for the same structure. The relation thus obtained, is used to determine the cell wall material properties, viz. elastic modulus and yield strength, by extrapolating it to the experimental porosity and using the measured response at this porosity. The simulations also provide qualitative insights into the nature of irreversible deformations, not only corroborating the experimental results, but also providing possible explanation to the mechanisms responsible for crushable behaviour of the nanofibrillar cellulose foams in compression.
  •  
8.
  • Srinivasa, Prashanth (författare)
  • Mechanics of Nanocellulose Foams : Experimental and Numerical Studies
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nanofibrillär cellulosa (NFC) skum är en intressant klass av cellulära material med möjliga applikationer som sträcker sig från fordonsindustrin till biomedicin då det har unika och önskvärda mekaniska egenskaper. I ljuset av de senaste framstegen inom framställning av skum förutspås det tillämpas inom en rad olika områden, inklusive områden där dess mekaniska egenskaper är viktiga. Den makroskopiska responsen är oskiljbart kopplad till mikrostrukturen hos materialet. Det är därför nödvändigt att ha numeriska modeller som inte bara kan förutsäga makroskopisk respons utan också ge insikt vid anpassning av mikrostrukturen så att förbättrade makroskopiska egenskaper kan uppnås. I detta syfte studerar vi 2- och 3-dimensionella slumpmässiga cellulära modeller och karakteriserar genom experiment/simuleringar de  makroskopiska och cellväggens materialegenskaper. I Artikel A utforskar vi  lämpligheten av 2-dimensionella slumpmässiga strukturer för att representera skums makroskopiska respons i tryck. Även om den 2-dimensionella modellen inte kan beskriva det exakta beteendet, endast en storleksordning överensstämmelse uppnås, kartlägger vi effekten av inre kontakt på den makroskopiska responsen och studerar effekten av linjär storlek, väggtjocklek och cellväggens kurvatur. Slutsatsen som dras är att 2-dimensionella modeller är otillräckliga och att förbindelserna ut ur planet är icke-triviala. I Artikel B framställs NFC skum genom frystorkning och karakteriseras experimentellt vid enaxlig och bi-axiell belastning för att utvärdera materialets strukturella anisotropi. Skummet visas vara isotropiskt i planet. Vidare uppkommer stora icke-reversibla deformationer vid avlastning. En hyperelastisk kontinuum-modell anpassas till experimentell data. I Artikel C används tomografibaserade tvärsnittsbilder för att bestämma cellväggens materialegenskaper. Vi rekonstruerar en 3-dimensionell struktur baserad på tomografibilder och använder den i finita element-simuleringar för att bestämma elasticitetsmodulen och sträckgränsen för cellväggens material. Resultaten visar att den beräknade elasticitetsmodulen är jämförbar med den övre gränsen för NFC papper, medan sträckgränsen är jämförbar med uppskattningar från indirekta metoder. Simuleringarna bekräftar även skademekansimen att formering av plastiska gångjärn följs av kollaps,  vilket också observerats i experimentella studier. I Artikel D använder vi de materialegenskaper som beräknats i det tomografibaserade arbetet i simuleringar av slumpmässigt genererade 3-dimensionella strukturer. Vi validerar de 3-dimensionella strukturerna mot strukturena som fångats med tomografi. Vi studerar därefter om de slumpmässiga strukturerna kan användas för att representera den makroskopiska responsen tillsammans med studierna av linjärstorlek och effekt av de delvis öppna/slutna cellerna. Vi beräknar även påverkan av cellytans kurvatur på elasticitetsmodulen och på platåspänningen. Vi visar att 3-dimensionella modeller är relativt representativa upp till medelhög töjningsgrad men att förtätningen inte fångas  upp av med den representativa storlek som används.
  •  
9.
  • Srinivasa, Prashanth (författare)
  • Non-linear mechanics of nanocellulose foams
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • There has been a growing interest in nano-fibrillar cellulose (NFC), which has been fuelled not merely by the advantages it presents in terms of strength to weight ratio and biodegradability, but also owing to the recent advances in production techniques. NFC foam is essentially a hierarchical structure, wherein nanofibrils account for the smallest scale, with the pores/cell walls forming the meso scale. A complete scanning of the mechanical property space would require understanding of the contribution of each of these scales in these foams. We aim to understand these scale relationships, eventually allowing for the possibility of tailoring material properties at scales of interest.In paper A, we look at the applicability of two-dimensional random Voronoi structures in capturing the large-strain compressive response of these foams. We introduce internal contact, into the interiors of the cell walls, with the aim of capturing the densification regime. We then study the scaling effects associated with such a model, and, subsequently single out the contribution of internal contact on the overall compressive response. While it is seen that internal contact in random structures allow for capturing the densification regime, the model only provides an order of magnitude agreement with experimental data.In paper B, we characterize the NFC foam based on both uni-axial and bi-axial experiments. One of the aims is to ascertain if there are effects of directionality to the stress-strain response. For the two considered porosities, we do not find any evidence for directionality in the response. We then proceed to make the assumption of isotropy, and adopt the well-known Ogden-Roxburgh “pseudo-elastic” model - originally proposed for incompressible rubber like materials - for the particular case of highly compressible foams. The model allows to capture the damage observed in unloading and also the significant residual strains.
  •  
10.
  • Srinivasa, Prashanth, et al. (författare)
  • On the torsion method for measurement of out-of-plane shear properties
  • 2019
  • Ingår i: International Paper Physics Conference 2019. - : TAPPI Press. ; , s. 8-13
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Torsional loading with combined out-of-plane compressive loading has been studied for its viability in measurement of out-of-plane shear properties. Paperboards of two qualities were evaluated, namely paperboard A, which was a multiply, while paperboard B was a single ply. Both paperboards were produced on commercial paperboard machines. A total of 24 samples were prepared, 12 of each quality, which were tested under four different load levels. Three different out-of-plane compressive load levels were tested in addition to test without compressive load. Results have been presented from the successful tests in terms of torque versus angle of torsion and shear stress versus shear strain plots. It has been demonstrated that the technique was suitable for out-of-plane shear measurements. An order of magnitude agreement in the values of the properties was obtained in the torsional test method and the rigid block shear tests. Results indicated a possible stable post-peak response in shear loading at sample sizes that would provide material properties comparable with that of a homogeneous test. The torsional setup offered benefit of ease of applying out-of-plane axial loads, both in compression and tension.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy