SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ståhlberg Freddy) "

Sökning: WFRF:(Ståhlberg Freddy)

  • Resultat 1-10 av 133
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, André, et al. (författare)
  • A linear mixed perfusion model for tissue partial volume correction of perfusion estimates in dynamic susceptibility contrast MRI: : Impact on absolute quantification, repeatability, and agreement with pseudo-continuous arterial spin labeling
  • 2017
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 77:6, s. 2203-2214
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The partial volume effect (PVE) is an important source of bias in brain perfusion measurements. The impact of tissue PVEs in perfusion measurements with dynamic susceptibility contrast MRI (DSC-MRI) has not yet been well established. The purpose of this study was to suggest a partial volume correction (PVC) approach for DSC-MRI and to study how PVC affects DSC-MRI perfusion results.METHODS: A linear mixed perfusion model for DSC-MRI was derived and evaluated by way of simulations. Twenty healthy volunteers were scanned twice, including DSC-MRI, arterial spin labeling (ASL), and partial volume measurements. Two different algorithms for PVC were employed and assessed.RESULTS: Simulations showed that the derived model had a tendency to overestimate perfusion values in voxels with high fractions of cerebrospinal fluid. PVC reduced the tissue volume dependence of DSC-MRI perfusion values from 44.4% to 4.2% in gray matter and from 55.3% to 14.2% in white matter. One PVC method significantly improved the voxel-wise repeatability, but PVC did not improve the spatial agreement between DSC-MRI and ASL perfusion maps.CONCLUSION: Significant PVEs were found for DSC-MRI perfusion estimates, and PVC successfully reduced those effects. The findings suggest that PVC might be an important consideration for DSC-MRI applications. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.
  •  
2.
  •  
3.
  • Ahlgren, André, et al. (författare)
  • Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.
  • 2014
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480. ; 27:9, s. 1112-1122
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume. Copyright © 2014 John Wiley & Sons, Ltd.
  •  
4.
  • Ahlgren, André, et al. (författare)
  • Perfusion quantification by model-free arterial spin labeling using nonlinear stochastic regularization deconvolution.
  • 2013
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley. - 1522-2594 .- 0740-3194. ; 70:5, s. 1470-1480
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Quantification of cerebral blood flow can be accomplished by model-free arterial spin labeling using the quantitative STAR labeling of arterial regions (QUASAR) sequence. The required deconvolution is normally based on block-circulant singular value decomposition (cSVD)/oscillation SVD (oSVD), an algorithm associated with nonphysiological residue functions and potential effects of arterial dispersion. The aim of this work was to amend this by implementing nonlinear stochastic regularization (NSR) deconvolution, previously used to retrieve realistic residue functions in dynamic susceptibility contrast MRI. METHODS: To characterize the residue function in model-free arterial spin labeling, and possibly to improve absolute cerebral blood flow quantification, NSR was applied to deconvolution of QUASAR data. For comparison, SVD-based deconvolution was also employed. Residue function characteristics and cerebral blood flow values from 10 volunteers were obtained. Simulations were performed to support the in vivo results. RESULTS: NSR was able to resolve realistic residue functions in contrast to the SVD-based methods. Mean cerebral blood flow estimates in gray matter were 36.6 ± 2.6, 28.6 ± 3.3, 40.9 ± 3.6, and 42.9 ± 3.9 mL/100 g/min for cSVD, oSVD, NSR, and NSR with correction for arterial dispersion, respectively. In simulations, the NSR-based perfusion estimates showed better accuracy than the SVD-based approaches. CONCLUSION: Perfusion quantification by model-free arterial spin labeling is evidently dependent on the selected deconvolution method, and NSR is a feasible alternative to SVD-based methods. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
  •  
5.
  • Ahlgren, André, et al. (författare)
  • Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data.
  • 2016
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 29:5, s. 640-649
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow-compensated and non-flow-compensated motion-encoded MRI data. A double diffusion encoding sequence capable of switching between flow-compensated and non-flow-compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow-compensated and non-flow-compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit. © 2016 The Authors NMR in Biomedicine published by John Wiley & Sons Ltd.
  •  
6.
  • Arheden, Håkan, et al. (författare)
  • Blood flow measurements
  • 2006
  • Ingår i: MRI and CT of the Cardiovascular System. - 0781762715 ; , s. 71-90
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  •  
8.
  • Bibic, Adnan, et al. (författare)
  • Denoising of arterial spin labeling data: wavelet-domain filtering compared with Gaussian smoothing.
  • 2010
  • Ingår i: Magma. - : Springer Science and Business Media LLC. - 1352-8661. ; 23:3, s. 125-137
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To investigate a wavelet-based filtering scheme for denoising of arterial spin labeling (ASL) data, potentially enabling reduction of the required number of averages and the acquisition time. METHODS: ASL magnetic resonance imaging (MRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer. The signal difference between a labeled image, where inflowing arterial spins are inverted, and a control image is proportional to blood perfusion. ASL perfusion maps suffer from low SNR, and the experiment must be repeated a number of times (typically more than 40) to achieve adequate image quality. In this study, systematic errors introduced by the proposed wavelet-domain filtering approach were investigated in simulated and experimental image datasets and compared with conventional Gaussian smoothing. RESULTS: Application of the proposed method enabled a reduction of the number of averages and the acquisition time by at least 50% with retained standard deviation, but with effects on absolute CBF values close to borders and edges. CONCLUSIONS: When the ASL perfusion maps showed moderate-to-high SNRs, wavelet-domain filtering was superior to Gaussian smoothing in the vicinity of borders between gray and white matter, while Gaussian smoothing was a better choice for larger homogeneous areas, irrespective of SNR.
  •  
9.
  • Bibic, Adnan, et al. (författare)
  • Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T
  • 2021
  • Ingår i: European Radiology Experimental. - : Springer Science and Business Media LLC. - 2509-9280. ; 5, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundOur aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric.MethodsDamaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05).ResultsAfter injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points).ConclusionsHaemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised.
  •  
10.
  • Bibic, Adnan, et al. (författare)
  • Measurement of vascular water transport in human subjects using time-resolved pulsed arterial spin labelling.
  • 2015
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480. ; 28:8, s. 1059-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • Most approaches to arterial spin labelling (ASL) data analysis aim to provide a quantitative measure of the cerebral blood flow (CBF). This study, however, focuses on the measurement of the transfer time of blood water through the capillaries to the parenchyma (referred to as the capillary transfer time, CTT) as an alternative parameter to characterise the haemodynamics of the system. The method employed is based on a non-compartmental model, and no measurements need to be added to a common time-resolved ASL experiment. Brownian motion of labelled spins in a potential was described by a one-dimensional general Langevin equation as the starting point, and as a Fokker-Planck differential equation for the averaged distribution of labelled spins at the end point, which takes into account the effects of flow and dispersion of labelled water by the pseudorandom nature of the microvasculature and the transcapillary permeability. Multi-inversion time (multi-TI) ASL data were acquired in 14 healthy subjects on two occasions in a test-retest design, using a pulsed ASL sequence and three-dimensional gradient and spin echo (3D-GRASE) readout. Based on an error analysis to predict the size of a region of interest (ROI) required to obtain reasonably precise parameter estimates, data were analysed in two relatively large ROIs, i.e. the occipital lobe (OC) and the insular cortex (IC). The average values of CTT in OC were 260 ± 60 ms in the first experiment and 270 ± 60 ms in the second experiment. The corresponding IC values were 460 ± 130 ms and 420 ± 139 ms, respectively. Information related to the water transfer time may be important for diagnostics and follow-up of cerebral conditions or diseases characterised by a disrupted blood-brain barrier or disturbed capillary blood flow. Copyright © 2015 John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 133
Typ av publikation
tidskriftsartikel (122)
konferensbidrag (3)
forskningsöversikt (3)
rapport (1)
proceedings (redaktörskap) (1)
annan publikation (1)
visa fler...
doktorsavhandling (1)
bokkapitel (1)
visa färre...
Typ av innehåll
refereegranskat (127)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Ståhlberg, Freddy (132)
Wirestam, Ronnie (64)
Knutsson, Linda (37)
Holtås, Stig (31)
Brockstedt, Sara (26)
Nilsson, Markus (25)
visa fler...
Lätt, Jimmy (22)
van Westen, Danielle (20)
Larsson, Elna-Marie (19)
Markenroth Bloch, Ka ... (15)
Geijer, Bo (11)
Ahlgren, André (10)
Lind, Emelie (10)
Björkman-Burtscher, ... (9)
Lindgren, Arne (9)
Arheden, Håkan (8)
Carlsson, Marcus (7)
Olsrud, Johan (7)
Thomsen, C. (7)
Sundgren, Pia (6)
Szczepankiewicz, Fil ... (6)
Topgaard, Daniel (6)
Johansson, Edvin (5)
Bibic, Adnan (5)
Thomsen, Carsten (5)
Nilsson, Anders (4)
Sundgren, Pia C. (4)
Svensson, Jonas (4)
Strand, Sven-Erik (4)
Englund, Elisabet (4)
Lasič, Samo (4)
Nordell, Bo (4)
Heiberg, Einar (4)
Mannfolk, Peter (4)
Bolling, Max (4)
van Osch, Matthias J ... (4)
Thilmann, Oliver (4)
Eriksson, Joakim (3)
Ryding, Erik (3)
Johansson, Gerd (3)
Persson, Bertil R (3)
Ingvar, Christian (3)
Holmqvist, Catarina (3)
Laurin, Sven (3)
Töger, Johannes (3)
Bojsen-Møller, Finn (3)
Juul-Kristensen, Bir ... (3)
Finsen, Lotte (3)
Greitz, Dan (3)
Surova, Yulia (3)
visa färre...
Lärosäte
Lunds universitet (132)
Linköpings universitet (4)
Uppsala universitet (2)
Göteborgs universitet (1)
Karolinska Institutet (1)
Språk
Engelska (130)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (125)
Naturvetenskap (19)
Teknik (6)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy