SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stølen Reidar) "

Sökning: WFRF:(Stølen Reidar)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boddaert, S., et al. (författare)
  • Fire safety of BIPV : International mapping of accredited and R&D facilities in the context of codes and standards 2023
  • 2023
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • The objective of Task 15 of the IEA Photovoltaic Power Systems Programme is to create an enabling framework to accelerate the penetration of BIPV products in the global market of renewables, resulting in an equal playing field for BIPV products, BAPV products and regular building envelope components, respecting mandatory issues, aesthetic issues, reliability issues, and financial issues.Subtask E of Task 15 is focused on pre-normative international research on BIPV characterisation methods and activity E.3 is dedicated to fire safety of BIPV modules and installations.
  •  
2.
  • Fjærestad, Janne Siren, et al. (författare)
  • Brannsikkerhet ved oppføring og rehabilitering av bygg
  • 2023
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Fire safety during construction and rehabilitation of buildings. This study deals with how the covering of buildings during the construction or rehabilitation of buildings affects fire safety and to what extent the regulations take this into account. The main focus has been mapping relevant requirements, recommendations, and performances related to the covering of buildings, mapping available materials, investigating the material’s fire properties, and modelling the spread of smoke within the covering. A mapping of the relevant laws and regulations applied for constructing and rehabilitating buildings has been carried out. The mapping has shown that demands are placed on owners, users, project owners, builders, businesses, employers, planners and contractors through many different laws and regulations. The people involved can have several roles, and similar roles have different names in the various regulations. For buildings in use, fire safety must be ensured for both the users and workers. It also applies that both the owner and the users are responsible for ensuring fire safety. It requires good communication and cooperation between different actors to ensure that fire safety is maintained for all involved, during the construction and rehabilitation of buildings. When covered scaffolding is used, the Regulations concerning the performance of work, use of work equipment and related technical requirements [10] require that the covering satisfy the fire requirements for materials used in escape routes (§17-20). The guideline to the Norwegian Regulations on technical requirements for construction works, TEK10, (Veiledningen til TEK10) §11-9, provides pre-accepted performance levels. For escape routes, class B-s1,d0 (In 1) is specified for walls and ceilings. There is no requirement for fire classification of the walkways in the scaffolding under the applicable laws and regulations. We believe there should be requirements for fire classification of the walkways, in the same way as for the covering, i.e., B-s1,d0 (In 1) for surfaces on walls and ceilings and Dfl-s1 (G) for surfaces on floors. The simulations of the spread of smoke from a fire inside a building during construction or rehabilitation show that the spread of smoke is affected when the scaffolding around the building is covered. Covering around the sides leads to a greater horizontal spread of smoke in the scaffolding than without covering. When the cover also has a roof, the smoke first accumulates underneath the cover's roof before it eventually also fills up with smoke down the floors of the scaffolding. The simulations showed that establishing an open field in the upper part of the cover would ventilate the smoke gases effectively, and the spread of smoke was essentially the same as for a cover without a roof. In addition, the simulation indicated that the air flow through the walkways in the scaffold could be an important factor in reducing the covering's negative effect on the spread of smoke. Of the 64 different products used for covering found in the survey, 35% had full classification according to EN 13501-1 (such as B,s1-d0). About 6% stated that the product was not flame retardant. Of the remainder, it was evenly distributed between those who stated a fire classification according to other test methods, those who did not provide any information on the fire properties and those who stated that the product was flame retardant without further specification. The mapping also indicates that the products from market leaders used by large general contractors provide products with documented fire properties. Conversations with two of Norway’s largest fire and rescue services shed light on several challenges connected to covering scaffolding and construction during firefighting activities. They pointed out that the covering could cause challenges and delays throughout their efforts. The covering gives a reduced visual overview of the spread of smoke and the location of doors and windows. This information is important for planning both extinguishing and smoke diver efforts. In addition, the covering can be an obstacle to the actual extinguishing effort, the use of an extinguishing agent and smoke divers and rescue efforts.
  •  
3.
  • Fjellgaard Mikalsen, Ragni, et al. (författare)
  • EBOB – Solcelleinstallasjoner på bygg : Brannspredning og sikkerhet for brannvesen
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • EBOB - Solar cell installations on buildings. Fire spread and safety for fire services.The aim of the project has been to answer the following four research questions: 1. How do wind speed and air gap size affect the fire development in the cavity between the solar cell module and the underlying roof structure, and how do these factors affect the extent of damage to the underlying roof structure? 2. How do solar cell modules affect a fire on a realistic, Norwegian, pitched roof? 3. What work is ongoing in Europe and internationally to developing test methods for fire technical documentation of photovoltaic modules, and how should this be implemented in Norway? 4. How should fire service personnel be secured in their work when the fire includes solar cell installation? In this research question, larger installations beyond residential houses and detached houses are also relevant, including larger buildings, flat roofs and BIPV. To answer research questions 1 and 2, a total of 29 experiments were performed with fire spread in the cavity behind solar cell modules on pitched roof surfaces. The experiments were performed at RISE Fire Research's laboratory in Trondheim in 2021. This main report (RISE report 2022:82) summarizes the entire project, and additional details from the experiments performed are given in a separate technical report (RISE report 2022:83). The main findings from the experiments are that solar cell modules mounted parallel to the roof surface on pitched roofs can affect the fire dynamics of a fire on the roof surface. It was found that both the length of the damaged area on the roof and the temperature rise inwards in the roof (below the chipboard) increased when the distance between the simulated solar cell module and the roof surface decreased. Furthermore, the findings indicate that there is a relation between the size of the gap between the roof surface and the solar cell module, and how large initial fire is needed for the fire to spread. A larger distance between the roof surface and the solar module requires a larger initial fire for the fire to spread. The temperature increase inwards in the roof structure was not large enough in the experiments performed to pose a danger of immediate fire spreading inwards in the structure. Work is ongoing internationally on the development of test methods for fire technical documentation of solar cell modules. This work has so far not resulted in new standards or procedures that can be implemented in Norway. Information has been found from various guidelines and reports on what equipment and expertise the fire service needs to secure their efforts. It is important that the fire service has sufficient knowledge about the working principle of a solar cell installation, so that they understand that parts of the installation can conduct electricity, even if the switch-off switch is activated. The fire service must also be given training in how to handle a fire in a building with a solar cell installation, as well as what protective equipment and tools are needed. The answers from the various fire services to a questionnaire show that solar cell installations rarely are included in the risk and vulnerability analyses (ROS analyses). As a consequence, they do not currently have good enough training and knowledge about handling fires in buildings with solar cell installations. The questionnaire also shows that it seems somewhat unclear to the fire service what responsibility they have in the event of a fire in solar cell installations. This should be clarified, and in cases where solar cell installations pose an increased risk, the fire service must be provided with resources so that they have the right equipment, the right competence, and the right staff to handle such fires.
  •  
4.
  • Fjellgaard Mikalsen, Ragni, et al. (författare)
  • From petrol station to multifuel energy station: Changes in fire and explosion safety
  • 2021
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • A multifuel energy station is a publicly available station which offers refueling of traditional fossil fuels in combination with one or more alternative energy carriers, such as hydrogen or electric power to electric vehicles. The goal of this study is to survey how the transition from traditional petrol stations to multifuel energy stations affects the fire and explosion risk. Relevant research publications, regulations and guidelines have been studied. Four interviews with relevant stakeholders have been conducted, in addition to correspondence with other stakeholders. The collected information has been used to evaluate and provide a general overview of fire and explosion risk at multifuel energy stations. The scope of the project is limited, and some types of fueling facilities (in conjunction with supermarkets, bus- and industrial facilities), some types of safety challenges (intended acts of sabotage and/or terror), as well as transport of fuel to and from the station, are not included. Availability of different types of fuel in Norway was investigated and three types were selected to be in focus: power for electric vehicles, gaseous hydrogen, as well as hydrogen and methane in liquid form. The selection was based on expected future use, as well as compatibility with the goal of the National Transport Plan that all new vehicles sold from 2025 should be zero emission vehicles. Currently, the category zero emission vehicle includes only electric- and hydrogen vehicles. In facilities that handle flammable, self-reactive, pressurized and explosive substances there is a risk of unwanted incidents. When facilities with hazardous substances comply with current regulations, the risk associated with handling hazardous substances is considered not to be significant compared to other risks in society. When new energy carriers are added, it is central to understand how the transition from a traditional petrol station to a multifuel energy station will change the fire and explosion risk. Factors that will have an impact include: number and type of ignition sources, number of passenger vehicles and heavy transport vehicles at the station, amount of flammable substances, duration of stay for visitors, complexity of the facility, size of the safety distances, fire service’s extinguishing efforts, environmental impact, maintenance need etc. In addition, each energy carrier entails unique scenarios. By introducing charging stations at multifuel energy stations, additional ignition sources are introduced compared to a traditional petrol station, since the charger itself can be considered as a potential ignition source. The charger and connected car must be placed outside the Ex-zone in accordance with NEK400 (processed Norwegian edition of IEC 60364 series, the CENELEC HD 60364 series and some complementary national standards), in such a way that ignition of potential leaks from fossil fuels or other fuels under normal operation conditions is considered unlikely to occur. A potential danger in the use of rapid charging is electric arcing, which can arise due to poor connections and high electric effect. Electric arcs produce local hot spots, which in turn can contribute to fire ignition. The danger of electric arcs is reduced by, among others, communication between the vehicle and charger, which assures that no charging is taking place before establishing good contact between the two. The communication also assures that it is not possible to drive off with the charger still connected. There are requirements for weekly inspections of the charger and the charging cable, which will contribute to quick discovery and subsequent repair of faults and mechanical wear. Other safety measures to reduce risk include collision protection of the charger, and emergency stop switches that cut the power delivery to all chargers. There is a potential danger of personal injury by electric shock, but this is considered most relevant during installation of the charger and can be reduced to an acceptable level by utilizing certified personnel and limited access for unauthorized personnel. For risk assessments and risk evaluations of each individual facility with charging stations, it is important to take into account the added ignition sources, as well as the other mentioned factors, in addition to facility specific factors. Gaseous hydrogen has different characteristics than conventional fuels at a petrol station, which affect the risk (frequency and consequence). Gaseous hydrogen is flammable, burns quickly and may explode given the right conditions. Furthermore, the gas is stored in high pressure tanks, producing high mechanical rupture energy, and the transport capacity of gaseous hydrogen leads to an increased number of trucks delivering hydrogen, compared with fossil fuels. On the other hand, gaseous hydrogen is light weight and easily rises upwards and dilute. In the case of a fire the flame has low radiant heat and heating outside the flame itself is limited. Important safety measures are open facilities, safe connections for high pressure fueling, and facilitate for pressure relief in a safe direction by the use of valves and sectioning, so that the gas is led upwards in a safe direction in case of a leakage. For risk assessments and risk evaluations of each individual facility with gaseous hydrogen, it is important to take into account the explosion hazard, as well as the other mentioned factors, in addition to facility specific factors. Liquid hydrogen (LH2) and liquid methane (LNG, LBG) are stored at very low temperatures and at a relatively low pressure. Leakages may result in cryogenic (very cold) leakages which may lead to personal injuries and embrittlement of materials such as steels. Critical installations which may be exposed to cryogenic leakages must be able to withstand these temperatures. In addition, physical boundaries to limit uncontrolled spreading of leakages should be established. Evaporation from tanks must be ventilated through safety valves. During a fire, the safety valves must not be drenched in extinguishing water, as they may freeze and seal. Leakages of liquid methane and liquid hydrogen will evaporate and form flammable and explosive gas clouds. Liquid hydrogen is kept at such a low temperature that uninsulated surfaces may cause air to condense and form liquid oxygen, which may give an intense fire or explosion when reacting with organic material. For risk assessments and risk evaluations of each individual facility with liquid hydrogen and liquid methane, it is important to take into account the cryogenic temperatures during storage and that it must be possible to ventilate off any gas formed by evaporation from a liquid leakage, as well as the other mentioned factors, in addition to facility specific factors. For the combination of more than one alternative energy carrier combined with fuels of a conventional petrol station, two areas of challenges have been identified: area challenges and cascading effects. Area challenges are due to the fact that risks to the surroundings must be evaluated based on all activity in the facility. When increasing the number of fueling systems within an area, the frequency of unwanted incidents at a given point in the facility is summarized (simply put). If two energy carriers are placed in too close proximity to each other, the risk can be disproportionately high. During construction, the fueling systems must be placed with sufficient space between them. In densely populated areas, shortage of space may limit the development. Cascading effects is a chain of events which starts small and grows larger, here due to an incident involving one energy carrier spreading to another. This may occur due to ignited liquid leakages which may flow to below a gas tank, or by explosion- or fire related damages to nearby installations due to shock waves, flying debris or flames. Good technical and organizational measures are important, such as sufficient training of personnel, follow-up and facility inspections, especially during start-up after installing a new energy carrier. The transition from a traditional petrol station to a multifuel energy station could not only give negative cascading effects, since sectionalizing of energy carriers, with lower storage volume per energy carrier, as well as physical separation between these, may give a reduction in the potential extent of damage of each facility. Apart from area challenges and cascading effects no other combination challenges, such a chemical interaction challenges, have been identified to potentially affect the fire and explosion risk. For future work it will be important to keep an eye on the development, nationally and internationally, since it is still too early to predict which energy carriers that will be most utilized in the future. If electric heavy transport (larger batteries and the need for fast charging with higher effect) become more common, it will be necessary to develop a plan and evaluate the risks of charging these at multifuel energy stations. For hydrogen there is a need for more knowledge on how the heat of a jet fire (ignited, pressurized leakage) affects impinged objects. There is also a general need for experimental and numerical research on liquid hydrogen and methane due to many knowledge gaps on the topic. During operation of the facilities and through potential unwanted incidents, new knowledge will be gained, and this knowledge must be utilized in order to update recommendations linked to the risk of fire and explosion in multifuel energy stations.
  •  
5.
  • Garberg Olsø, Brynhild, et al. (författare)
  • Factors Affecting the Fire Safety Design of Photovoltaic Installations Under Performance-Based Regulations in Norway
  • 2023
  • Ingår i: Fire technology. - 0015-2684 .- 1572-8099. ; 59, s. 2055-
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of Photovoltaic (PV) installations on the fire safety of buildings must be considered in all building projects where such energy systems are established. The holistic fire safety of the building largely depends on how the fire safety of the PV installation is considered by the different actors during the design and construction process. Research has therefore been undertaken to study how performance-based regulations in combination with the lack of national guidelines affect the overall fire safety considerations for PV installations in Norway. Four factors were found to govern to which extent PV installations are emphasised in the fire safety design phase: (1) whether the building was first of its kind as a pioneering building, (2) whether the building was built before or after the publication of the 2018 revision of the norm NEK 400, (3) The level of knowledge and experience of the fire safety consultant, which in turn affects the use of performance-based engineering tools and the level of detailing in the design and construction phases, and (4) The degree of integration in the building. The main goal of the study is to give an insight and a contribution to the development of in-depth knowledge on how fire safety design for PV installations on buildings is handled in Norway, which may also be relevant to other countries with similar performance-based regulations.
  •  
6.
  •  
7.
  • Sanfeliu Meliá, Cristina, et al. (författare)
  • Energy storage, energy production and SMART technology in buildings
  • 2021
  • Ingår i: Proc of Nordic Fire and Safety Days 2021. - 9789189385450 ; , s. 63-
  • Konferensbidrag (refereegranskat)abstract
    • Modern buildings are being built with increasingly complex technical installations and energy systems. The introduction of renewable energy production, like photovoltaic (PV) panels on building roofs and facades and an increasing number of connected electric appliances, changes the way the electric power is distributed from production to end-user. The difference in production and demand for energy over time also gives incentives for installing energy storage systems. Electric energy can be stored in batteries, transferred into hydrogen gas via electrolysis or stored as thermal energy for use later. The current work presents an overview of an ongoing study in the Fire Research and Innovation Centre (FRIC), on fire safety implications related to implementing new technology for energy storage and production. The focus is on the built environment such as dwellings and office buildings situated in the Nordic countries. This study builds on previous studies of related topics
  •  
8.
  • Steen-Hansen, Anne, et al. (författare)
  • Analysis of cooking fires in Norway
  • 2010
  • Ingår i: Proceedings of the Interflam 2010 Conference. - : Interscience Communications.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
9.
  • Stølen, Reidar, et al. (författare)
  • Brann i holrom bak royaloljebehandla kledning av furu
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This report contains measurements, observations, and results from 30 experiments with fire in the cavity between the wood cladding and the wind barrier. The experiments were performed at RISE Fire Research's laboratory in Trondheim in 2021. The main focus of the study is on fire inside the cavity between the wind barrier and the cladding. The purpose has been to investigate how different parameters, such as material use and geometry, affect the fire in this cavity. This test series is done by using varying combinations of royal oil-treated and untreated cladding of pine with wind barriers of two different reaction to fire classifications and two different lathing types in the various experiments The various experimental setups have been done in a way that is meant to represent typical constructions in Norwegian houses with wooden cladding. All walls were flat, with cladding without gaps or openings and without internal corners, extruding parts, doors, windows, or other penetrations. In most experiments, measures were taken to shield the outside of the cladding from exposure to the initial fire. In several experiments, however, the fire also established itself on the outside of the cladding after it had burned through the cladding from the inside. Large-scale experiments have also been carried out, where both the cavity and the front of the cladding were exposed to the initial fire. The experiments' results show that the use of royal oil-treated cladding had no statistically significant effect on how the fire in the cavity spread. The results indicate that the use of the used wind barrier with reaction to fire classification F lead to faster flame spread and temperature rise than the used wind barrier with fire classification A2 did, but this is not statistically significant and may be due to random variations. Experiments with vertical lathing showed faster temperature rise in the cavity than experiments with cross-lathing. This means that the heat spreads faster upwards in the cavity when it forms continuous vertical channels than where the cavity is connected both horizontally and vertically between the cross-lathing. In the cavity with cross-lathing, on the other hand, the heat and fire spread to a greater extent laterally than in the cavity with only vertical lathing. The fire in the cavity was in many of the experiments limited by oxygen supply. This shows that the supply of air in the cavity can be as crucial for delimiting the fire spread as the fire properties of the materials inside the cavity. When the cavity fire is delimited by the oxygen supply, higher amounts of combustible gases will be formed in the smoke. This can cause the fire to spread to other places if this gas can be re-ignited.
  •  
10.
  • Stølen, Reidar, et al. (författare)
  • Brann til middag? : Undersøkelse av sikringstiltak mot branner på komfyr
  • 2011
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Feil bruk av komfyrer står for nesten 20 % av alle branner med kjent årsak i Norge. I perioden 1998 – 2007ble det registrert 1240 branner hvor årsaken var tørrkoking på komfyr. Direktoratet for samfunnssikkerhet ogberedskap (DSB) ønsket med dette prosjektet å kartlegge omfanget og årsakene til at slike branner oppstår,og hva som kan gjøres for å forhindre dem.Det er gjennomført et litteraturstudium som gir oversikt over internasjonal forskning og erfaringer påområdet.DSBs brannstatistikk fra perioden 1998-2007 er analysert, og et utvalg på 40 av politietsetterforskningsrapporter fra komfyrbranner er gjennomgått.En rekke ulike matvarer ble testet i røykkammer med utstyr for gassanalyse, for å prøve å karakteriseresammensetningen av røyken før antennelse. Det viste seg imidlertid at utstyret ikke var egnet for denne typenprøvemateriale, og derfor ikke ga resultater som kunne brukes videre i prosjektet.Til sist er 7 komfyrvakter blitt testet i fullskalaforsøk med brann på komfyrtopp. Det er gjennomført i alt 76tester.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy